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Abstract

The provable security methodology is an effective tool for ruling out attacks against cryptographic systems.
Yet for a given system, it succeeds only to the degree to which the system’s formal specification faithfully
captures its observed behavior. Practical considerations regarding the standardization, implementation, and
deployment of cryptography regularly create discrepancies between the real system and the subject of the
analysis, resulting in a gap between what is known about the system and its security in the real world. This
dissertation offers a critical perspective on the task of reconciling provable security with the translation of
cryptography into practice. Its main contribution is a formal characterization of translations that are “safe”,
in the sense that it is possible to patch the existing proof in order to account for the observed behavior.
Based on this characterization, we develop an analytical framework in which security of the translated system
is proved by appealing to results already established for the original. This strategy preserves the rigor of
a direct proof, but bares a significantly lower cost in terms of analytical effort. We demonstrate this by
exhibiting a number of exercises and case studies that cover a wide range of problems. The diversity of these
problems illustrates the framework’s utility as a guide for interpreting provable security in practice.
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Chapter 1

Introduction

There are a handful of problems with which mathematicians and computer scientists have grappled with for
decades, and sometimes centuries, to no avail. For example:

Problem 1. Given an integer N > 1, find primes p1, p2, . . . , pe such that N = p1 · p2 · · · pe.

Problem 2. Given a prime p > 2, the generator g of a multiplicative group of integers modulo p,
and a point X in the group, find x such that X = gx.

Problem 3. Given the basis of an n-dimensional lattice L ⊂ Rn, find a shortest non-zero vector
~v ∈ L.

These problems and others like them are “hard” in the sense that no (classical) algorithm is known for solving
them efficiently. Remarkably, the premise of secure communication in the modern world is that mounting
a successful attack is as hard as solving these kinds of problems. Establishing this premise is the principle
task of cryptography and its discipline of provable security.

Provable security concerns the formal modeling and analysis of computer systems, especially those that
use cryptography in order to meet their goals. The task begins by specifying an experiment that models the
scheme’s execution environment (i.e., how the adversary interacts with it) and the attacker’s objective. We
say the scheme is secure if every efficient (i.e., polynomial-time) adversary’s probability of success is small
(i.e., negligible in the “security parameter”). This can be shown by exhibiting a reduction from some hard
problem to the scheme’s security: given an efficient attacker A that breaks Π with probability δ, the idea is
to construct an efficient algorithm BA that solves some problem P with probability (close to) δ; if this can
be done, then P being hard implies that Π is secure.

The potential for this methodology to rule out attacks has profoundly transformed the practice of cryp-
tography [132], so much so that a security reduction is often a prerequisite for the standardization, implemen-
tation, and eventual deployment of cryptographic systems. Yet it is common for these very same processes
to create discrepancies between the real system and its formal specification. The subject of this dissertation
is the task of reconciling these discrepancies with existing analysis.

1.1 Translation and the Limits of Provable Security

In this work, the term system refers to both a cryptographic scheme and the environment in which it is
executed. As a concrete example, think of a set of clients and servers communicating with one another
over the Internet using the TLS1 protocol [123]. A system’s provable security treatment (e.g., Bhargavan

1Transport Layer Security.
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et al. for TLS [39]) necessarily includes a formal specification of the scheme and its execution environment;
and when discrepancies arise between the real system and its formal specification, it is necessary to revise
the specification to account for the observed behavior. In this thesis, we refer to this process as translation.

Translation is often intentional, as by the standardization of a protocol in the literature (this process
often requires making changes in order to account for operational details not reflected in the original scheme)
or by the addition of a new feature into an existing standard (e.g., via a protocol extension). It can also
be the unintentional (or unavoidable) consequence of deployment or implementation, as by the (accidental)
reuse of the system’s secret keys in other applications. In general, a translation is a change to a scheme’s
specification or environment that creates a gap between what is known about the system and its security in
practice. Because this gap can result in attacks, it has catalyzed the development of proof techniques for
modeling as much real-world behavior as possible.

1.1.1 A Priori Analysis

Due to its crucial role in our daily lives, much of this effort has focused on the TLS protocol, standardized by
RFCs2 8446 (version 1.3), 5246 (1.2), 4346 (1.1), and 2246 (1.0). Each of these documents is the culmination
of a community-driven process that aims to balance the wide ranging and often conflicting interests of
organizations who hold a stake in the protocol’s design. Rather than fully specify a single protocol, TLS
admits a variety of valid implementations, each having its own set of features and security properties. The
protocol has been in wide use for more than 20 years (the first version was adopted in 1999 [11]), and in
that time, it has undergone significant evolution. Until recently, its development was driven primarily by the
discovery of attacks and responses to those attacks [113]: only for the latest version (adopted in 2018 [123])
was provable security pursued for the complete standard, prior to the protocol’s deployment.

As TLS has evolved, so have our analytical tools. The earliest formal treatments for the protocol [85, 91,
96] considered feature sets in isolation (i.e., a single choice of authentication mechanism, protocol version,
ciphersuite, set of extensions, etc.), but overtime, various breakthroughs enabled analysis in increasingly
sophisticated detail, including modeling the mechanism whereby the client and server choose (i.e., negotiate)
the set of features to use [43, 100, 41]. Among the most innovative approaches were the mechanization of
provable security, as embodied by the miTLS project [42, 45, 67]; and the “Partially Specified Protocols”
(PSP) framework of Rogaway and Stegers [130].

Mechanization. What distinguishes a mechanized proof from a conventional “pen-and-paper” one is that
the system is specified in a programming language with a formal semantics that lends itself to the study
of cryptographic security goals.3 This enables the use of a theorem prover to help find a proof; and once
a proof is found, its verification is completely automated, thereby increasing our confidence in the proof’s
correctness. Mechanization provides several advantages, not the least of which is that it eases the analytical
cost of making revisions in light of changes to the protocol’s specification [39]. This feature allows the
analysis to scale to complex systems like TLS.

Despite this advantage, existing mechanized proofs of TLS share one feature with their pen-and-paper
counterparts that, ultimately, limits their ability to account for the full range of real-world behavior. An
important feature of TLS, and other protocols of similar complexity, is that its standard only partially
specifies the behavior of the communicants such that the security provided by any given implementation
depends upon how it interprets unspecified details. Existing mechanized proofs for TLS apply only to a
single implementation of the standard.

2Request For Comments.
3A number of languages have been developed for this purpose, e.g., CryptoVerif [46]. Related languages like Tamarin [19]

and ProVerif [47] are only suitable for Dolev-Yao-style symbolic analysis [69]: in this dissertation we are interested in standard,
computational security properties.
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The PSP Methodology. A work by Rogaway and Stegers from 2009 [130] provides an elegant solution to
this problem. When devising the protocol’s formal specification, their strategy is to divide the protocol into
two components: the “protocol core (PC)”, comprised of the functionalities that are essential to security;
and the “specification details (SD)”, which captures everything else. Formally, the SD is thought of as an
oracle that the PC makes calls to in order to implement the full protocol. But in the security experiment,
SD-oracle queries are answered by the adversary, thereby formalizing a kind of worst-case behavior of the
SD: intuitively, if security can be proven, then the protocol is secure no matter how the SD is realized.
This is an exceptionally strong attack model, but one that yields a rigorous treatment of the standard itself,
and not just a single interpretation of its unspecified behavior. In theory, it allows the analyst to specify
the (potentially large) set of behaviors the real system might exhibit without impacting the analysis, i.e.,
without the need to revise the formal specification.

Both of these methodologies make significant strides, but the benefits they provide for practice are
essentially at the limit of what a priori security analysis can do. The state of provable security of TLS is
a patchwork of results that, together, paint a fairly complete picture of the protocol’s real-world security.
And this analytical effort has paid off: as our tools have evolved, so have avenues of attack become more
sophisticated and harder to exploit [10, 134]. But the TLS standard is subject to continual change, as new
use cases and operational requirements continue to drive the protocol’s development. As a result of these
forces, ensuring that its security rests on firm, formal foundations remains an on-going challenge.

1.1.2 A Posteriori Analysis

When considering a change to a cryptographic protocol or its execution environment, the immediate task
is to determine whether the translation leads to an attack. Assuming the original system is supported by
a proof of security, this analysis requires an intimate understanding of the existing proof in order to decide
if it can be “patched” to account for the change. Furthermore, preserving the same level of rigor for the
translated system as for the original entails generating a fresh proof (i.e., “applying the patch”). This task
bares a significant analytical cost, one that makes a rigorous analysis prohibitive. Especially when the
change is (or at least appears to be) relatively straightforward, it is common to give an informal argument
that sketches how to patch the original proof (e.g., [30, §5], [59, §9], and [93, §5]). Thus, the central question
of this dissertation is whether the rigor of the existing analysis can be preserved without resorting to a fresh
proof.

The answer we provide is that, for many translations, it is possible to prove security by appealing directly
to the existing result. In particular, we prove a composition lemma that, for “safe” translations, yields a
reduction from the security of the original system to the security of the translated system, thereby allowing
one to argue security by reasoning about the translation itself. The centerpiece of this dissertation is its
translation framework (presented in Chapter 2), which provides a formal characterization of not only safe
translations, but also those that are “risky”, in the sense that they could lead to an attack. We provide an
overview of the framework in the next section.

1.2 The Translation Framework

Our framework begins with a new look at an old idea. In particular, we extend the notion of indifferen-
tiability of Maurer, Renner, and Holenstein [104] (hereafter MRH) to the study of cryptographic protocols.
Indifferentiability has become an important tool for provable security. Most famously, it provides a precise
way to argue that security in the random oracle model (ROM) [29] is preserved when the random oracle (RO)
is instantiated by a concrete hash function that uses a “smaller” idealized primitive, such as a compression
function modeled as an RO. Coron et al. [60] were the first to explore this application of indifferentiability,
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Figure 1.1: Illustration of the MAINψ (Def. 1) and SR-INDIFFψ (Def. 3) security experiments for worlds W,V ,
resources ~R, ~Q, adversary A, simulator S, and transcript predicate ψ.

and due to the existing plethora of ROM-based results and the community’s burgeoning focus on designing
replacements for SHA-1 [141], the use of indifferentiability in the design and analysis of hash functions has
become commonplace.

Despite this focus, the MRH framework is more broadly applicable. A few works have leveraged this,
e.g.: to construct ideal ciphers from Feistel networks [61]; to define security of key-derivation functions in the
multi-instance setting [28]; to unify various security goals for authenticated encryption [14]; or to formalize
the goal of domain separation in the ROM [22]. Yet all of these applications of indifferentiability are about
cryptographic primitives (i.e., objects that are non-interactive). To the best of our knowledge, ours is the
first work to explicitly consider the application of indifferentiability to protocols.

Our conceptual starting point is a bit more general than MRH. In particular, we define indifferentiability
in terms of the world in which the adversary finds itself, so named because of the common use of phrases
like “real world”, “ideal world”, and “oracle worlds” when discussing security definitions. Formally, a world is
a particular kind of object (defined in §2.1) that is constructed by connecting up a game [33] with a scheme,
the former defining the security goal of the latter. The scheme is embedded within a system that specifies
how the adversary and game interact with it, i.e., the scheme’s execution environment.

Intuitively, when a world and an adversary are executed together, we can measure the probability of
specific events occurring as a way to define adversarial success. Our MAINψ security experiment, illustrated
in the left panel of Figure 1.1, captures this. The outcome of the experiment is 1 (“true”) if the adversary A
“wins”, as determined by the output w of world W , and predicate ψ on the transcript tx of the adversary’s
queries also evaluates to 1. Along the lines of “penalty-style” definitions [133], the transcript predicate
determines whether or not A’s attack was valid, i.e., whether the attack constitutes a trivial win. (For
example, if W captures IND-CCA security of an encryption scheme, then ψ would penalize decryption of
challenge ciphertexts.)

Shared-Resource Indifferentiability and The Lifting Lemma. Also present in the experiment is a
(possibly empty) tuple of resources ~R, which may be called by both the world W and the adversary A.
This captures embellishments to the base security experiment that may be used to prove security, but are
not essential to the definition of security itself. An element of ~R might be an idealized object such as an
RO [29], ideal cipher [61], or generic group [121]; it might be used to model global trusted setup, such as
distribution of a common reference string [55]; or it might provide A (and W ) with an oracle that solves
some hard problem, such as the DDH oracle in the formulation of the Gap DH problem [109].

The result is a generalized notion of indifferentiability that we call shared-resource indifferentiability.
The SR-INDIFFψ experiment, illustrated in the right panel of Figure 1.1, considers an adversary’s ability to
distinguish some real world/resource pairW/~R (read “W with ~R”) from a reference world/resource pair V/~Q
when the world and the adversary share access to the resources. The real world W exposes two interfaces to
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the adversary, denoted by subscripts W1 and W2, that we will call the main and auxiliary interfaces of W ,
respectively. The reference world V also exposes two interfaces (with the same monikers), although the
adversary’s access to the auxiliary interface of V is mediated by a simulator S. Likewise, the adversary has
direct access to resources ~R in the real experiment, and S-mediated access to resources ~Q in the reference
experiment.

The auxiliary interface captures what changes as a result of translating world V/~Q into W/~R: the job
of the simulator S is to “fool” the adversary into believing it is interacting with W/~R when in fact it is
interacting with V/~Q. Intuitively, if for a given adversary A there is a simulator S that successfully “fools”
it, then this should yield a way to translate A’s attack against W/~R into an attack against V/~Q. This
intuition is captured by our “lifting” lemma (Lemma 1, §2.3), which says that if V/~Q is MAINψ-secure
and W/~R is indifferentiable from V/~Q (as captured by SR-INDIFFψ), then W/~R is also MAINψ-secure.

Games and The Preservation Lemma. For all applications in this dissertation, a world is specified in
terms of two objects: the intended security goal of a scheme, formalized as a (single-stage [129]) game; and the
system that specifies the execution environment for the scheme. In §2.4 we specify a world W = Wo(G,X)

whose main interface allows the adversary to “play” the game G and whose auxiliary interface allows it to
interact with the system X.

The world’s auxiliary interface captures what “changes” from the reference experiment to the real one,
and the main interface captures what stays the same. Intuitively, if a system X is indifferentiable from Y ,
then it ought to be the case that world Wo(G,X) is indifferentiable from Wo(G, Y ), since in the former
setting, the adversary might simply play the game G in its head. Thus, by Lemma 1, if Y is secure in the
sense of G, then so is X. We formalize this intuition via a simple “preservation” lemma (Lemma 2, §2.4),
which states that the indifferentiability of X from Y is “preserved” when access to X’s (resp. Y ’s) main
interface is mediated by a game G. As we show in §2.4, this yields the main result of MRH as a corollary
(cf. [104, Theorem 1]).

Taken together, the lifting lemma and the preservation lemma allow us to prove some real system is
secure by appealing directly to what is known a priori about the system from which it was derived. This
significantly reduces the analytical effort of ensuring that translation does not result in an attack: instead of
generating a fresh proof, it suffices to prove that that the real system is indifferentiable from the reference
system. Another benefit of this approach is that it is (largely) agnostic to the security goal, since proving
indifferentiability entails reasoning about the translation itself. As we will see, this provides a convenient way
to vet changes to a scheme or its execution environment, without the need to descend into the particulars
of the security goal.

Updated Pseudocode. An important feature of our framework is its highly expressive pseudocode. MRH
define indifferentiability in terms of “interacting systems” formalized as sequences of conditional probability
distributions (cf. [104, §3.1]). This abstraction, while extremely expressive, is much harder to work with than
conventional cryptographic pseudocode. A contribution of this dissertation is to articulate an abstraction
that provides much of the expressiveness of MRH, while preserving the level of rigor typical of game-playing
proofs of security [33]. In §2.1 we formalize objects, which are used to define the various entities that run in
security experiments, including games, adversaries, systems, and schemes.

Accounting for Unspecified Behavior. Finally, the translation framework also incorporates the PSP
methodology of Rogaway and Stegers [130], allowing us to account for unspecified behavior in the objects
we study. To do so, our experiments provide the world access the adversary’s auxiliary interface (A2, as
shown in Figure 1.1), enabling the game and system to be defined so that the protocol’s SD-oracle queries
are answered by the adversary. We provide concrete demonstrations in Chapters 3 and 4.
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1.3 Thesis Objectives and Organization

One of provable security’s most important functions is to provide assurance for the translation of cryptogra-
phy into practice, but it succeeds only to the extent that the system’s formal specification faithfully captures
its real-world behavior. Ensuring that it does bares a significant analytical cost, one that is often prohibitive
to a fully rigorous treatment. Thus, the central thesis of this dissertation is as follows:

When evaluating the security impact of changes to a cryptographic scheme or its execution environment,
it is possible to preserve the rigor of existing analysis without incurring the cost of a direct proof.

We put forward a theory for reconciling translation with existing results in which the scope of the new
analysis is the translation itself. The objective of this dissertation is to demonstrate that narrowing the scope
in this way substantially reduces the analytical effort required to strengthen the foundations of real-world
cryptography.

Unspecified Behavior. We begin in Chapter 3 with an exploration of the limits of a priori security analysis.
We give a formal treatment of the TLS 1.3 record layer [123], the component of TLS that is used to protect
data sent during the course of the protocol. In our analysis (Theorem 2), we view the record layer as being
only partially specified [130], allowing us to capture in its formal specification the full range of real-world
behaviors that the standard admits. As a consequence, our result is much more robust than other studies
with similar scope [114, 67]. Still, the TLS protocol is subject to changes that our treatment would not
account for. By way of illustrating the practical value of the translation framework, we end this chapter
with with a discussion of the limitations of our analysis.

Protocol Translation. We consider a translation to be “safe” if one can prove indifferentiability of the real
system from the reference system. Chapter 4 presents our first real-world application of this idea, in which
we consider the problem of translating a system by changing the scheme’s specification. In particular, we
specify a system eCK that formalizes the interaction of an adversary with an authenticated key-exchange
(AKE) protocol in the extended Canetti-Krawczyk (eCK) model [99]. For real protocol Π and reference
protocol Π̃, indifferentiability of eCK(Π) from eCK(Π̃) lets us appeal to the security of Π̃ in order to
argue that Π is itself secure. We demonstrate this approach by designing a TLS extension that integrates
a protocol for password-authenticated key-exchange (PAKE) [27] into the TLS handshake. We instantiate
the extension with SPAKE2 [4] and exhibit a tight reduction from existing results for this PAKE [4, 20, 1]
to its usage in TLS.

Environment Translation. Our second application, presented in Chapter 5, addresses the problem of
translating the scheme’s execution environment. In particular, we formalize a setting for key reuse in which
multiple applications share access to a cryptographic API4 that specifies the set of computations for one or
more secret keys. In this setting, the reference system ÃPI(Γ ) provides access to an API Γ for the target
application only, whereas the real system API(Γ ) provides access for multiple applications. The latter
allows the adversary to mount an exposed interface attack against the target application by providing the
adversary direct access to Γ , conservatively modeling cross protocol attacks against the target application
that arise as a result of shared access to Γ . Using a property we call context separability, the lifting lemma
and a variant of the preservation lemma (Lemma 4) allow us to argue that an application is secure under
exposed interface attack by appealing to what has already been established by existing analysis. A special
case of SR-INDIFFψ security, context separability formalizes the property of Γ that enables this reduction.
This property evident in a variety of cryptographic standards, two of which we will study in detail: the
RFC-standardized version of EdDSA [87]; and the Noise protocol framework [120].

Roadmap of the Remainder. The next section of this chapter discusses related work and describes
various attacks that arise as a result of translation; the last section enumerates the preliminary work on

4Application Programming Interface.
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which this dissertation is based. The translation framework is defined in Chapter 2; Chapters 3, 4, and 5
present the three studies described above; and we conclude in Chapter 6.

1.4 Related Work

Attacks Resulting From Translation. The class of attacks that result from translation is well-known,
though not always as such. They are subtle, span multiple levels of abstraction, and crop up in a wide range
of applications. Here we describe a few of the attacks that inspired our formal methodology.

Early versions of TLS have an optional feature known as “renegotiation” that allows the client and server
to change the cryptographic parameters of an already established channel. If implemented, this feature leads
to a man-in-the-middle attack in which the adversary forges a message from an authenticated client to a
server. The first formal treatment of renegotiation is due to Giesen et al. [78], who describe this attack
in the ACCE security model [85] and show that patching the protocol with the “renegotiation indication”
extension [122] salvages security in this setting.

A cross protocol attack against TLS 1.2 was discovered by Mavrogiannopoulos et al. [105] that exploits
an interaction between two key-exchange modes: classical DH [68], already in wide use at the time; and
DH for groups over elliptic curves (ECDH), which were added to TLS later on [107]. TLS 1.2 allows
the client and server to negotiate custom (EC)DH parameters as follows. In its ClientHello, the client
indicates support for DH, ECDH, or both, and the ServerKeyExchange sent in response encodes the selected
(EC)DH parameters, the server’s (EC)DH key share, and a signature of the parameters and key share.
Mavrogiannopoulos observe that the set of encodings of DH parameters/shares and the set of encodings of
ECDH parameters/shares are non-disjoint, meaning it is possible for a client to misinterpret an ECDH key
exchange as a DH key exchange. Under the right conditions, this ambiguity leads to a key-recovery attack
that lets an active attacker impersonate the server to the client. While this attack is difficult to exploit,
it does reveal a theoretical weakness in TLS 1.2. Indeed, provable security treatments of TLS 1.2 do not
account for negotiation of custom EC(DH) parameters [45].

Keyless SSL [142] is a protocol deployed by Cloudflare that is used to proxy TLS connections between
clients and servers, without the need to have the server’s secret key on premise. In this protocol, the server
exposes a signing API to mutually authenticated peers (i.e., trusted proxies) in order to allow them to
terminate TLS on its behalf. To sign a handshake with a client, the proxy sends the message to be signed
to the server, which responds with the signature. But instead of operating on the message msg itself, the
API operates on a hash of the message H(msg), which is an intermediate value in certain signature schemes
used in TLS. Bhargavan et al. [40] show that this API could lead to a cross-protocol attack with QUIC [79],
another widely-deployed secure channel protocol. In the absence of mutual authentication of the peer (which
Keyless SSL provides), their attack would allow anyone with access to this API to impersonate a QUIC
server.

There are several well-documented examples of API design flaws leading to insecure key reuse. Degabriele
et al. [65] provide an analysis of the EMV5 standard [72] for credit-card payments. To reduce overhead in
this highly constrained environment, the API permits signing and decryption operations involving the same
RSA secret key. The authors exhibit a practical forgery attack against the signature scheme that exploits
oracle access to the decryption operation. An analysis by Künnemann et al. [97] points out a flaw in the
API for Yubico’s YubiHSM product that admits an oracle for a blockcipher keyed by the same key used to
encrypt in CBC-mode. This leads to a fairly straightforward plaintext-recovery attack that substantially
reduces the security of the HSM’s6 usage for key management. (The flaw has since been patched.)

5Europay, Mastercard, and Visa.
6Hardware Security Module.
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In recent years, Intel and other chip manufacturers have moved to develop protocol standards for remote
attestation of the state of a host, enabling a wide variety of trustworthy computing applications. Since the
host is often an end-user system (e.g., a laptop or cellphone), ensuring that remote attestation preserves
the user’s privacy is paramount. There are a variety of direct anonymous attestation (DAA) schemes [50]
designed for this purpose, and Intel’s TPM7 standard exposes an API designed to support many of them.
Balancing flexibility and security in the API’s design has proved to be challenging and has resulted in some
subtle attack vectors [6, 52].

Sub-Protocol “Lifting”. The lifting lemma (Lemma 1) owes its namesake to the formal treatment of
downgrade resilience for key exchange of Bhargavan et al. [41]. Because widely deployed protocols like TLS
allow communicants to support different feature sets, these protocols specify a mechanism by which the
parties can agree on which set to use. Loosely, a key-exchange protocol is said to be downgrade resilient if
no active attacker can force communicating parties to negotiate a feature set other than the one that would
have been chosen in the absence of the attacker.

Recognizing the difficulty of precisely accounting for all of the details in complex standards, the authors
devised the following analytical approach. They extract from the protocol’s specifying document(s) the
protocol core that is responsible for negotiating the feature set. They call this the “sub-protocol”. Downgrade
resilience is proved for the core protocol, then lifted to the full one by applying a composition theorem—the
“downgrade security lifting” theorem [41, Theorem 2]—that transforms an attack against the full protocol
into an attack against the core protocol. Intuitively, this theorem defines the set of full protocols whose
downgrade security follows immediately from the downgrade security of the core protocol: part of the job of
the analyst is to determine if the real protocol is in this set. (Incidentally, this step is akin to partitioning the
standard into the PC and SD in the PSP framework [130].) As we show in §4.1.3, their theorem is essentially
an information-theoretic analogue of our lifting lemma.

The Universal Composability (UC) Framework. MRH point out (cf. [104, §3.3]) that the notion of
indifferentiability is inspired by ideas introduced in the UC framework [53]. There are conceptual similarities
between UC (in particular, its generalization that allows for shared state [54]) and our framework, but the
two are quite different in their details. We do not explore any formal relationship between frameworks, nor
do we consider how one might modify UC to account for things that are naturally handled by ours, such
as translation or unspecified behavior. However, we note that the two frameworks are quite different in
their goals. The goal of the UC framework is to obtain simulation-style notions of security for cryptographic
protocols that, via the universal composition theorem, modularize their analysis with respect to concrete
attacks. In contrast, our primary objective is to reason about secure translation.

1.5 Preliminary Work

This thesis is based on three papers by the author: the first, referred to as PS18, is the basis of Chapter 3;
the second, PS19, is the basis of Chapter 5; and the third, PS20, describes the translation framework of
Chapter 2 and its application to protocol translation in Chapter 4.

PS18 [116] “Partially specified channels: The TLS 1.3 record layer without elision.” CCS 2018.

PS19 [117] “Security in the presence of key reuse: Context-separable interfaces and their appli-
cations.” CRYPTO 2019.

PS20 [118] “Quantifying the security cost of migrating protocols to practice.” CRYPTO 2020.

7Trusted Platform Module.
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There are substantial differences between the original publications of PS18 [116] and PS19 [117] and their
presentation here. First, there is a bug in the original analysis of the record layer in PS18, which we resolve
by placing mild restrictions on the behavior of the SD oracle (cf. Remark 4). Second, we reformulate the
definitions of PS19 in the more general setting of SR-INDIFFψ security, which yields a far simpler and
more general treatment of exposed interface attacks (cf. Remark 7). Along the way, we fix an error in the
derivation of the bound for [117, Theorem 1].
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Chapter 2

The Translation Framework

This chapter describes the formal foundation of this dissertation. We begin in §2.1 by defining objects,
our abstraction of the various entities run in a security experiment; in §2.2 we define our base experiment
and formalize shared-resource indifferentiability; in §2.3 we state and prove the lifting lemma, the central
technical tool of this work; and in §2.4 we formalize the class of security goals to which our framework
applies.

Notation. When X is a random variable we let Pr
[
X = v

]
denote the probability that X is equal to v; we

write Pr
[
X

]
as shorthand for Pr

[
X = 1

]
. We let x← y denote assignment of the value of y to variable x.

When X is a finite set we let x ←← X denote random assignment of an element of X to x according to the
uniform distribution.

A string is an element of {0, 1}∗; a tuple is a finite sequence of symbols separated by commas and
delimited by parentheses. Let ε denote the empty string, ( ) the empty tuple, and (z, ) the singleton tuple
containing z. We sometimes (but not always) denote a tuple with an arrow above the variable (e.g., ~x ).
Let |x| denote the length of a string (resp. tuple) x. Let xi and x[i] denote the i-th element of x. Let x ‖ y
denote concatenation of x with string (resp. tuple) y. When x is a string, let x[i:j] denote the sub-string
xi ‖ · · · ‖xj of x. If i 6∈ [1..j] or j 6∈ [i..|x|], then define x[i:j] = ⊥. Let x[i:] = x[i:|x|] and x[:j] = x[1:j]. We
write x � y if string x is a prefix of string y, i.e., there exists some r such that x ‖ r = y. Let y % x denote
the “remainder” r after removing the prefix x from y; if x 6� y, then define y % x = ε (cf. [48]). When x is
a tuple we let x . z = (x1, . . . , x|x|, z) so that z is “appended” to x. We write z ∈ x if (∃ i)xi = z. Let [i..j]
denote the set of integers {i, . . . , j}; if j < i, then define [i..j] as ∅. Let [n] = [1..n].

For all sets X and functions f, g : X → {0, 1}, define function f ∧ g as the map [f ∧ g](x) 7→ f(x) ∧ g(x)
for all x ∈ X . We denote a group as a pair (G, ∗), where G is the set of group elements and ∗ denotes the
group action. Logarithms are base-2 unless otherwise specified.

2.1 Objects

Our goal is to preserve the expressiveness of the MRH framework [104] while providing the level of rigor of
code-based game-playing arguments [33]. To strike this balance, we will need to add a bit of machinery to
standard cryptographic pseudocode. Objects provide this.

Each object has a specification that defines how it is used and how it interacts with other objects. We
first define specifications, then describe how to call an object in an experiment and how to instantiate an
object. Pseudocode in this dissertation will be typed (along the lines of Rogaway and Stegers [130]), so we
enumerate the available types in this section. We finish by defining various properties of objects that will
be used in the remainder.
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astub → | stub
astubs → astub | astub, astubs
avar → | var
avars → avar | avar, avars
dec → var typedvars
decs → ε | dec | dec; decs
interface → interface type: {ops}
op → oporacles (pattern) otype: {block}
ops → ε | op | op; ops
otype → ε | type
oracles → ε | astubs
pattern → ε | . . . | literal | avars type | (pattern) | patterns
patterns → pattern | pattern, patterns
proc → procedure type(vars): {block}
spec → spec type: {decs; ops}
typedvars → vars type | vars type, typedvars
vars → var | var, vars

spec Ro:
1 var X ,Y set, q, p int
2 var T table, i, j int
3 op (SETUP): T ← [ ]; i, j ← 0
4 op (x elemX ):
5 if i ≥ q then ret ⊥
6 if T [x] = ⊥ then
7 i← i+ 1; T [x]←← Y
8 ret T [x]
9 op (SET,M object):

10 var x elemX , y elemY
11 if j ≥ p then ret ⊥
12 j ← j + 1; ((x, y), σ)←M( )
13 T [x]← y
14 ret ((x, y), σ)

Figure 2.1: Left: Context-free grammar for specifications. Production begins with term spec. Variables type, var,
literal, block, and stub are undefined. Code blocks will usually be denoted by indentation rather than “{” and “}”.
The semicolon “;” will usually be denoted by a new line. Right: Specification of a random oracle (RO) object.
When instantiated, variables X and Y determine the domain and range of the RO, and integers q and p determine,
respectively, the maximum number of distinct RO queries, and the maximum number of RO-programming queries
(via the SET-operator), (cf. Def. 7).

2.1.1 Specifications

The relationship between a specification and an object is analogous to (but far simpler than) the relationship
between a class and a class instance in object-oriented programming languages like Python or C++. A
specification defines an ordered sequence of variables stored by an object—these are akin to attributes in Python—
and an ordered sequence of operators that may be called by other objects—these are akin to methods. We refer to
the sequence of variables as the object’s state and to the sequence of operators as the object’s interface.

We provide an example of a specification in Figure 2.1. Spec Ro is used throughout this work to model functions
as random oracles (ROs) [29]. It declares seven variables, X , Y, q, p, T , i, and j, as shown on lines 1-2 in Figure 2.1.
(We will use shorthand for line references in the remainder, e.g., “2.1:1-2” rather than “lines 1-2 in Figure 2.1”.) Each
variable has an associated type: X and Y have type set, q, p, i, and j have type int, and T has type table. Variable
declarations are denoted by the keyword “var”, while operator definitions are denoted by the keyword “op”. Spec Ro
defines three operators: the first, the SETUP-operator (2.1:3), initializes the RO’s state; the second operator (2.1:4-8)
responds to standard RO queries; and the third, the SET-operator (2.1:9-14), is used to “program” the RO [77].

Pseudocode. The syntax of specifications is given by the context-free grammar in Figure 2.1. We have omitted the
production rules for type, var, literal, and block since they are standard. Briefly, a var denotes a variable. A type denotes a
type, e.g., set, int, table, or elemX , or the name of a specification, e.g., Ro. A literal is a finite sequence of symbols
from some alphabet, e.g., an integer or a bit string. We often write bit-string literals as alphanumeric strings, e.g.,
SETUP or SET, which are understood to be distinct elements of {0, 1}∗. A block is a sequence of statements such as
variable declarations, (random) assignment statements, if-then-else blocks, for-loops, return statements, etc. A stub

is an interface oracle, written calligraphically like A, B, C, and so on. (Note that we also write sets calligraphically.)
It is the name used by the operator to refer to an oracle passed to it, as we describe below.

2.1.2 Calling an Object

An object is called by providing it with oracles and passing arguments to it. An oracle is always an interface, i.e.,
a sequence of operators defined by an object. The statement “out ← obj I1,...,Im(in1, . . . , inn)” means to invoke one
of obj ’s operators on input of in1, . . . , inn and with oracle access to interfaces I1, . . . , Im and set variable out to the
value returned by the operator. Objects will usually have many operators, so we must specify the manner in which
the responding operator is chosen. For this purpose we will adopt a convention inspired by “pattern matching” in
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functional languages like Haskell and Rust. Syntactically, a pattern is defined by the pattern term in Figure 2.1. It is
comprised of a tuple of literals, typed variables, and nested tuples. A value is said to match a pattern if they have
the same type and the literals are equal. For example, value val matches pattern ( elemX ) if val has type elemX .
(The symbol “ ” contained in the pattern denotes an anonymous variable.) Hence, if object R is specified by Ro
and x has type elemX , then the expression “R(x)” calls R’s second operator (2.1:4-8). We write “val ∼ pat” if the
value of variable val matches pattern pat .

Calls to objects are evaluated as follows. In the order in which they are defined, check each operator of the
object’s specification if the input matches the operator’s pattern. If so, then execute the operator until a return
statement is reached and assign the return value to the output. If no return statement is reached, or if val does not
match an operator, then return ⊥.

Let us consider an illustrative example. Let Π be an object that implements Schnorr’s signature scheme [135]
for a group (G, ·) as specified in Figure 2.2. The expression Π(GEN) calls Π’s first operator, which generates a fresh
key pair. If s ∈ Z and msg ∈ {0, 1}∗, then expression ΠH

s (SIGN,msg) evaluates the third operator, which computes
a signature (x, t) of message msg under secret key s (we will often write the first argument as a subscript). The
call to interface oracle H on line 2.2:5 is answered by object H. (Presumably, H is a hash function with domain
G × {0, 1}∗ and range Z|G|.) If PK ∈ G, msg ∈ {0, 1}∗, and x, t ∈ Z, then expression ΠH

PK (VERIFY,msg , (x, t))

evaluates the second operator. On an input that does not match any of these patterns—in particular, one of (GEN),
( elemG ,VERIFY, str, ( , int)), or ( int, SIGN, str)—the object returns ⊥. For example, ΠI1,...,Im(foo bar) = ⊥
for any I1, . . . , Im.

It is up to the caller to ensure that the correct number of interfaces is passed to the operator. If the number of
interfaces passed is less than the number of oracles named by the operator, then calls to the remaining oracles are
always answered with ⊥; if the number of interfaces is more than the number of oracles named by the operator, then
the remaining interfaces are simply ignored by the operator.

Explanation. We will see examples of pattern matching in action throughout this dissertation. For now, the
important takeaway is that calling an object results in one (or none) of its operators being invoked: which one is
invoked depends on the type of input and the order in which the operators are defined.

Because these calling conventions are more sophisticated than usual, let us take a moment to explain their purpose.
Theorem statements in this work will often quantify over large sets of objects whose functionality is unspecified. These
conventions ensure that doing so is always well-defined, since any object can be called on any input, regardless of
the input type. We could have dealt with this differently: for example, in their adaptation of indifferentiability to
multi-staged games, Ristenpart et al. require a similar convention for functionalities and games (cf. “unspecified
procedure” in [129, §2]). Our hope is that the higher level of rigor of our formalism will ease the task of verifying
proofs of security in our framework.

2.1.3 Instantiating an Object

An object is instantiated by passing arguments to its specification. The statement “obj ← Object(in1, . . . , inm)”
means to create a new object obj of type Object and initialize its state by setting obj .var1 ← in1, . . . , obj .varm ←
inm, where var1, . . . , varm are the first m variables declared by Object. If the number of arguments passed is less
than the number of variables declared, then the remaining variables are uninitialized. For example, the statement
“R← Ro(X ,Y, q, p, [ ], 0, 0)” initializes R by setting R.X ← X , R.Y ← Y, R.q ← q, R.p← p, R.T ← [ ], R.i← 0, and
R.j ← 0. The statement “R← Ro(X ,Y, q, p)” sets R.X ← X , R.Y ← Y, R.q ← q, and R.p← p, but leaves T , i, and j
uninitialized. Object can also be copied: the statement “new ← obj ” means to instantiate a new object new with

spec Schnorr:
1 op (GEN): s←← Z|G|; PK ← gs; ret (PK , s)

2 opH (PK elemG ,VERIFY,msg str, (x, t int)):
3 ret t ≡ H(gx · PK t,msg) (mod |G|)

4 opH (s int, SIGN,msg str):
5 r ←← Z|G|; t← H(gr,msg)
6 ret (r − st, t)

Figure 2.2: Specification of Schnorr’s signature scheme.
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specification Object and set new .var1 ← obj .var1, . . . ,new .varn ← obj .varn, where var1, . . . , varn is the sequence
of variables declared by obj ’s specification.

2.1.4 Types

We now enumerate the types available in our pseudocode. An object has type object. A set of values of type any
(defined below) has type set; we let ∅ denote the empty set. A variable of type table stores a table of key/value
pairs, where keys and values both have type any. If T is a table, then we let Tk and T [k] denote the value associated
with key k in T ; if no such value exists, then Tk = ⊥. We let [ ] denote the empty table.

When the value of a variable x is an element of a computable set X , we say that x has type elemX . We define
type int as an alias of elemZ, type bool as an alias of elem{0,1}, and type str as an alias of elem{0,1}∗ . We define
type any recursively as follows. A variable x is said to have type any if: it is equal to ⊥ or ( ); has type set, table,
or elemX for some computable set X ; or it is a tuple of values of type any.

Specifications declare the type of each variable of an object’s state. The types of variables that are local to the
scope of an operator need not be explicitly declared, but their type must be inferable from their initialization (that
is, the first use of the variable in an assignment statement). If a variable is assigned a value of a type other than the
variable’s type, then the variable is assigned ⊥. Variables that are declared but not yet initialized have the value ⊥.
For all I1, . . . , Im, in1, . . . , inn the expression “⊥I1,...,Im(in1, . . . , inn)” evaluates to ⊥. We say that x = ⊥ or ⊥ = x if
variable x was previously assigned ⊥. For all other expressions, our convention will be that whenever ⊥ is an input,
the expression evaluates to ⊥.

2.1.5 Properties of Operators and Objects

An operator is called deterministic if its definition does not contain a random assignment statement; it is called
stateless if its definition contains no assignment statement in which one of the object’s variables appears on the
left-hand side; and an operator is called functional if it is deterministic and stateless. Likewise, an object is called
deterministic (resp. stateless or functional) if each operator, with the exception of the SETUP-operator, is deterministic
(resp. stateless or functional). (We make an exception for the SETUP-operator in order to allow trusted setup of objects
executed in our experiments. See §2.2 for details.)

Resources. Let t ∈ N. An operator is called t-time if it always halts in t time steps regardless of its random choices
or the responses to its queries; we say that an operator is halting if it is t-time for some t <∞. Our convention will be
that an operator’s runtime includes the time required to evaluate its oracle queries. Let ~q ∈ N∗. An operator is called
~q-query if it makes at most ~q1 calls to its first oracle, ~q2 to its second, and so on. We extend these definitions to objects,
and say that an object is t-time (resp. halting or ~q-query) if each operator of its interface is t-time (resp. halting or
~q-query).

Exported Operators. An operator f1 is said to shadow operator f2 if: (1) f1 appears first in the sequence of
operators defined by the specification; and (2) there is some input that matches both f1 and f2. For example, an
operator with pattern (x any) would shadow an operator with pattern (y str), since y is of type str and any. An
object is said to export a pat-type-operator if its specification defines a non-shadowed operator that, when run on an
input matching pattern pat , always returns a value of type type. Let X and Y be computable sets. An object F
computes a function f : X → Y if F is halting, functional, exports an ( elemX )-elemY -operator, and F (x) = f(x)

holds for every x ∈ X .

2.2 Experiments and Indifferentiability

This section describes our core security experiments. An experiment connects up a set of objects in a particular way,
giving each object oracle access to interfaces (i.e., sequences of operators) exported by other objects. An object’s
i-interface is the sequence of operators whose patterns are prefixed by literal i. We sometimes write i as a subscript,
e.g., “Xi( · · · )” instead of “X(i, · · · )” or “X(i, ( · · · ))”. We refer to an object’s 1-interface as its main interface and to
its 2-interface as its auxiliary interface.
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procedure RealΦ
W/~R

(A):
1 A(SETUP); W (SETUP)
2 for i← 1 to u do Ri(SETUP)

3 tx ← ( ); a← AW1,W2,R
1 (OUT)

4 w ←W1(WIN); ret Φ(tx , a, w)

procedure W(i, x):
5 y ←WA2,R

i (x); tx ← tx . (i, x, y); ret y

procedure A(i, x):
6 if S = ⊥ then ret AW1,W2,R

i (x) //Real

7 ret AW1,S2,S3
i (x) //Ref

procedure Ref Φ
W/~R

(A,S):
8 S(SETUP); A(SETUP); W (SETUP)
9 for i← 1 to u do Ri(SETUP)

10 tx ← ( ); a← AW1,S2,S3
1 (OUT)

11 w ←W1(WIN); ret Φ(tx , a, w)

procedure R(i, x):
12 ret Ri(x)

procedure S(i, x):
13 ret SW2,R

i (x)

Figure 2.3: Real and reference experiments for world W , resources ~R = (R1, . . . , Ru), adversary A, and simulator S.

A resource is a halting object. A simulator is a halting object. An adversary is a halting object that exports a
(1,OUT)-bool-operator, which means that on input of (OUT) to its main interface, it outputs a bit. This operator
is used to in order to initiate the adversary’s attack. The attack is formalized by the adversary’s interaction with
another object, called the world, which codifies the system under attack and the adversary’s goal. Formally, a world
is a halting object that exports a functional (1,WIN)-bool-operator, which means that on input of (WIN) to its main
interface, the world outputs a bit that determines if the adversary has won. The operator being functional means
this decision is made deterministically and in a “read-only” manner, so that the object’s state is not altered. (These
features are necessary to prove the lifting lemma in §2.3.)

2.2.1 MAIN Security

Security experiments are formalized by the execution of procedure Real defined in Figure 2.3 for adversary A in
world W with shared resources ~R = (R1, . . . , Ru). In addition, the procedure is parameterized by a function Φ. The
experiment begins by “setting up” each object by running A(SETUP), W (SETUP), and Ri(SETUP) for each i ∈ [u].
This allows for trusted setup of each object before the attack begins. Next, the procedure runs A with oracle access
to procedures W1, W2, and R, which provide A with access to, respectively, W ’s main interface, W ’s auxiliary
interface, and the resources ~R.

Figure 1.1 illustrates which objects have access to which interfaces. The worldW and adversary A share access to
the resources ~R. In addition, the world has access to the auxiliary interface of A (2.3:5), which allows us to formalize
security properties in the PSP setting [130]. (Interestingly, it also turns out to be essential to MRH’s argument of the
necessity of indifferentiability; see Proposition 2.) Each query to W1 or W2 by A is recorded in a tuple tx called the
experiment transcript (2.3:5). The outcome of the experiment is Φ(tx , a, w), where a is the bit output by A and w
is the bit output by W . The MAINψ security notion, defined below, captures an adversary’s advantage in “winning”
in a given world, where what it means to “win” is defined by the world itself. The validity of the attack is defined by
a function ψ, called the transcript predicate: in the MAINψ experiment, we define Φ so that RealΦ

W/~R
(A) = 1 holds

if A wins and ψ(tx ) = 1 holds.

Definition 1 (MAINψ security). Let W be a world, ~R be resources, and A be an adversary. Let ψ be a transcript
predicate, and let winψ(tx , a, w) := (ψ(tx ) = 1) ∧ (w=1). The MAINψ advantage of A in attacking W/~R is

Advmainψ

W/~R
(A) := Pr

[
Realwin

ψ

W/~R
(A)

]
.

Informally, we say that W/~R is ψ-secure if the MAINψ advantage of every efficient adversary is small. Note that
advantage for indistinguishability-style security notions is defined by normalizing MAINψ advantage (e.g., Def. 10 or
Def. 17). �

This measure of advantage is only meaningful if ψ is efficiently computable, since otherwise a computationally
bounded adversary may lack the resources needed to determine if its attack is valid. Following Rogaway-Zhang
(cf. computability of “fixedness” in [133, §2]) we will require ψ(tx ) to be efficiently computable given the entire
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transcript, except the response to the last query. Intuitively, this exception ensures that, at any given moment, the
adversary “knows” whether its next query is valid before making it.

Definition 2 (Transcript-predicate computability). Let ψ be a transcript predicate. Object F computes ψ if it is
halting, functional, and F (t̄x ) = ψ(tx ) holds for all transcripts tx , where t̄x = (tx1, . . . , tx q−1, (iq, xq,⊥)) , q = |tx |,
and (iq, xq, ) = tx q. We say that ψ is computable if there is an object that computes it. We say that ψ is t-time
computable if there is a t-time object F that computes it. Informally, we say that ψ is efficiently computable if it is
t-time computable for small t. �

Shorthand. In the remainder we write “W/~R” as “W/H” when “ ~R = (H, )”, i.e., when the resource tuple is a
singleton containing H. Similarly, we write “W/~R” as “W ” when ~R = ( ), i.e., when no shared resources are available.
We write “win” instead of “winψ” whenever ψ is defined so that ψ(tx ) = 1 for all transcripts tx . Correspondingly, we
write “MAIN” for the security notion obtained by letting Φ = win.

2.2.2 SR-INDIFF Security

The Real procedure executes an adversary in a world that shares resources with the adversary. We are interested
in the adversary’s ability to distinguish this “real” experiment from a “reference” experiment in which we change the
world and/or resources with which the adversary interacts. To that end, Figure 2.3 also defines the Ref procedure,
which executes an adversary in a fashion similar to Real except that a simulator S mediates the adversary’s access
to the resources and the world’s auxiliary interface. In particular, A’s oracles W2 and R are replaced with S2 and S3

respectively (2.3:7 and 10), which run S with access to W2 and R (2.3:13). SR-INDIFFψ advantage, defined below,
measures the adversary’s ability to distinguish between a world W/~R in the real experiment and another world V/~Q
in the reference experiment.

Definition 3 (SR-INDIFFψ security). Let W,V be worlds, ~R, ~Q be resources, A be an adversary, and S be a
simulator. Let ψ be a transcript predicate and let outψ(tx , a, w) := (ψ(tx ) = 1) ∧ (a= 1). Define the SR-INDIFFψ

advantage of adversary A in differentiating W/~R from V/~Q relative to S as

Advsr-indiff
ψ

W/~R,V/~Q
(A,S) := Pr

[
Real out

ψ

W/~R
(A)

]
− Pr

[
Ref outψ

V/~Q
(A,S)

]
.

By convention, the runtime of A is the runtime of Real out
ψ

W/~R
(A). Informally, we say that W/~R is ψ-indifferentiable

from V/~Q if for every efficient A there exists an efficient S for which the SR-INDIFFψ advantage of A is small. �

Shorthand. We write “out” instead of “outψ” when ψ is defined so that ψ(tx ) = 1 for all tx . Correspondingly, we
write “SR-INDIFF” for the security notion obtained by letting Φ = out.

2.2.3 Non-Degenerate Adversaries

When defining security, it is typical to design the experiment so that it is guaranteed to halt. Indeed, there are
pathological conditions under which RealΦ

W/~R
(A) and Ref Φ

W/~R
(A,S) do not halt, even if each of the constituent

objects is halting (as defined in §2.1.5). This is because infinite loops are possible: in response to a query from
adversary A, the world W is allowed to query the adversary’s auxiliary interface A2; the responding operator may
call W in turn, which may call A2, and so on. Consequently, the event that RealΦ

W/~R
(A) = 1 (resp. Ref Φ

W/~R
(A,S) =

1) must be regarded as the event that the real (resp. reference) experiment halts and outputs 1. Defining advantage
this way creates obstacles for quantifying resources of a security reduction, so it will be useful to rule out infinite
loops.

We define the class of non-degenerate (n.d.) adversaries as those that respond to main-interface queries using all
three oracles—the world’s main interface, the world’s aux.-interface, and the resources—but respond to aux.-interface
queries using only the resource oracle. To formalize this behavior, we define n.d. adversaries in terms of an object
that is called in response to main-interface queries, and another object that is called in response to aux.-interface
queries.
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spec NoDeg: //W points to W1; W′ to W2;
//R to resources

1 var M,SD object
2 op (SETUP): M(SETUP); SD(SETUP)

3 opW,W
′,R (1, x any): ret MW,W

′,R(x)

4 opW,W
′,R (2, x any): ret SDR(x)

spec Shλ: //A points to A2 in the experiment.

5 var W,R1, . . . , Rλ object
6 op (SETUP): W (SETUP)
7 for i← 1 to λ do Ri(SETUP)

8 opA (1,WO, x any): ret WR,A
1 (x)

9 opA (2,WO, x any): ret WR,A
2 (x)

10 opA (2, RO, i int, x any): ret Ri(x)

procedure R(i, x):
11 ret Ri(x)

Figure 2.4: Left: Specification of n.d. (non-degenerate) adversaries. Right: Specification Shλ used in Proposition 1.

Definition 4 (Non-degenerate adversaries). An adversary A is called non-degenerate (n.d.) if there exist a halting
object M that exports an (OUT)-bool-operator and a halting, functional object SD for which A = NoDeg(M,SD)

as specified in Figure 2.4. We refer to M as the main algorithm and to SD as the auxiliary algorithm. �

Observe that we have also restricted n.d. adversaries so that the main and auxiliary algorithms do not share state;
and we have required that the auxiliary algorithm is functional (i.e., deterministic and stateless). These measures
are not necessary, strictly speaking, but they will be useful for security proofs. Their purpose is primarily technical,
as they do not appear to be restrictive in a practical sense. (They do not limit any of the applications considered in
this thesis. Incidentally, we note that Rogaway and Stegers make similar restrictions in [130, §5]; see Remark 4.)

2.2.4 Equivalence of SR-INDIFF and INDIFF

An analogue of MRH’s notion of indifferentiability is obtained by removing the shared resources from the SR-INDIFF
experiment, i.e., letting ~R, ~Q = ( ).

Definition 5 (INDIFFψ security). Let W,V be worlds, A an adversary, S a simulator, and ψ a transcript predicate.
Let Advindiff

ψ

W,V (A,S) :=Advsr-indiff
ψ

W,V (A,S) denote the INDIFFψ advantage of A in differentiating W from V relative
to S. �

In this sense, SR-INDIFFψ security can be viewed as a generalization of the standard notion. An alternative view
is that shared-resource indifferentiability merely captures a particular class of indifferentiability problems. Indeed, for
world W and resources ~R = (R1, . . . , Ru), Figure 2.4 specifies a world Ŵ = Shu(W,R1, . . . , Ru) that is functionally
equivalent to W/~R, except that the resources are codified by the world Ŵ rather than defined externally.

Proposition 1. Let ψ be a transcript predicate, f : N→ N be a function, W,V be worlds, and ~R = (R1, . . . , Ru), ~Q =

(Q1, . . . , Qv) be resources. Let Ŵ = Shu(W,R1, . . . , Ru) and V̂ = Shv(V,Q1, . . . , Qv). Let A be a tA-time, n.d. ad-
versary, let T be a tT -time simulator, and suppose that ψ is f(tA)-time computable.

(1) There exist a O(tA)-time, n.d. adversary B, O(tT )-time simulator S, and [O(tA) +f(tA)]-time computable
transcript-predicate φ such that Advindiff

ψ

Ŵ ,V̂
(A,S) ≤ Advsr-indiff

φ

W/~R,V/~Q
(B, T ).

(2) There exist a O(tA)-time, n.d. adversary B, O(tT )-time simulator S, and [O(tA) +f(tA)]-time computable
transcript-predicate φ such that Advsr-indiff

ψ

W/~R,V/~Q
(A,S) ≤ Advindiff

φ

Ŵ ,V̂
(B, T ).

Proof. We begin with claim (1). Adversary B is specified as follows. On input of (SETUP), run A(SETUP). On input
of (1,OUT) with interface oracles W,W ′,R corresponding to the world’s main interface, the world’s aux. interface,
and the resource interface respectively, return AW1,W2

1 (OUT), where Wi(in) is evaluated as follows: if (i, in) ∼
(1,WO, x any), then return W(x); if (i, in) ∼ (2,WO, x any), then return W ′(x); and if (i, in) ∼ (2, RO, i int, xany),
then returnRi(x). On input of (2, x any) with oraclesW,W ′,R, run AW1,W2

2 (x) and return the output. Simulator S
is defined as follows. On input of (SETUP), run T (SETUP). On input of (in) with oracle W ′, run TW2,R(in), where
W2(x) is evaluated as W ′(WO, x) and Ri(x) is evaluated as W ′(RO, i, x).

25



Noting that the runtime of B is O(tA), the runtime of S is O(tT ), and there exists a [O(tA)+f(tA)]-time transcript
predicate φ such that

Pr
[
Real out

φ

W/~R
(B)

]
= Pr

[
Real out

ψ

Ŵ (A)
]

and Pr
[
Ref outφ

V/~Q
(B, T )

]
= Pr

[
Ref outψ

V̂ (A,S)
]

(2.1)

yields the claim. Predicate φ is computed by first rewriting the queries in the transcript in the natural way, then
applying ψ to the result. The rewriting step can be done in time linear in the size of the transcript, which, by
definition, is linear in the runtime of the adversary.

We now prove claim (2). Adversary B is specified as follows. On input of (SETUP), run A(SETUP). On input of
(1,OUT) with oracles W,W ′, run AW1,W2,R

1 (OUT) and return the output, where W1(x) is evaluated as W(WO, x),
W2(x) as W ′(WO, x), and Ri(x) as W ′(RO, i, x). On input of (2, x any) with oracles W,W ′, run AW1,W2

2 (x) and
return the output. Simulator S is defined as follows. On input of (SETUP), run T (SETUP). On input of (in) with
oracles W ′,R, run TW2(in), where W2(in) is evaluated as follows: if in ∼ (WO, x any), then return W ′(x); and
if in ∼ (RO, i int, x any), then return Ri(x). �

2.3 The Lifting Lemma
The main technical tool of our framework is its lifting lemma, which states that if V/~Q is ψ-secure and W/~R is
ψ-indifferentiable from V/~Q, then W/~R is also ψ-secure. This is a generalization of the main result of MRH, which
states that if an object X is secure for a given application and X is indifferentiable from Y , then Y is secure for the
same application. In §2.4 we give a precise definition of “application” for which this statement holds.

The Random Oracle Model (ROM). The goal of the lifting lemma is to transform a ψ-attacker against W/~R
into a ψ-attacker against V/~Q. Indifferentiability is used in the following way: given ψ-attacker A and simulator S,
we construct a ψ-attacker B and ψ-differentiator D such that, in the real experiment, D outputs 1 if A wins; and
in the reference experiment, D outputs 1 if B wins. Adversary B works by running A in the reference experiment
with simulator S: intuitively, if the simulation provided by S “looks like” the real experiment, then B should succeed
whenever A succeeds.

This argument might seem familiar, even to readers who have no exposure to the notion of indifferentiability.
Indeed, a number of reductions in the provable security literature share the same basic structure. For example,
when proving a signature scheme is unforgeable under chosen message attack (UF-CMA), the first step is usually
to transform the attacker into a weaker one that does not have access to a signing oracle. This argument involves
exhibiting a simulator that correctly answers the UF-CMA adversary’s signing-oracle queries using only the public
key (cf. [32, Theorem 4.1]): if the simulation is efficient, then we can argue that security in the weak attack model
reduces to UF-CMA. Similarly, to prove a public-key encryption (PKE) scheme is indistinguishable under chosen
ciphertext attack (IND-CCA), the strategy might be to exhibit a simulator for the decryption oracle in order to argue
that IND-CPA reduces to IND-CCA.

Given the kinds of objects we wish to study, it will be useful for us to accommodate these types of arguments in
the lifting lemma. In particular, Lemma 1 considers the case in which one of the resources in the reference experiment
is an RO that may be “programmed” by the simulator. (As we discuss in §2.4.2, this capability is commonly used
when simulating signing-oracle queries.) In our setting, the RO is programmed by passing it an object M via its
SET-operator (2.1:9-14), which is run by the RO in order to populate the table. Normally we will require M to be an
entropy source with the following properties.

Definition 6 (Sources). Let µ, ρ ≥ 0 be real numbers and X ,Y be computable sets. An X -source is a stateless
object that exports a ( )-elemX -operator. An (X ,Y)-source is a stateless object that exports a ( )-(elemX×Y ,any)-
operator. Let M be an (X ,Y)-source and let ((X,Y ), Σ) be random variables distributed according to M . (That is,
run ((x, y), σ)←M( ) and assign X ← x, Y ← y, and Σ ← σ.) We say that M is (µ, ρ)-min-entropy if the following
conditions hold:

(1) For all x and y it holds that Pr
[
X = x

]
≤ 2−µ and Pr

[
Y = y

]
≤ 2−ρ.

(2) For all y and σ it holds that Pr
[
Y = y

]
= Pr

[
Y = y | Σ = σ

]
.
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We refer to σ as the auxiliary information (cf. “source” in [23, §3]). �

A brief explanation is in order. When a source is executed by an RO, the table T is programmed with the output
point (x, y) so that T [x] = y. The auxiliary information σ is returned to the caller (2.1:14), allowing the source to
provide the simulator a “hint” about how the point was chosen. Condition (1) is our min-entropy requirement for
sources. We also require condition (2), which states that the range point programmed by the source is independent
of the auxiliary information.

Definition 7 (The ROM). Let X ,Y be computable sets where Y is finite, let q, p ≥ 0 be integers, and let µ, ρ ≥ 0

be real numbers. A random oracle from X to Y with query limit (q, p) is the object R = Ro(X ,Y, q, p) specified in
Figure 2.1. This object permits at most q unique RO queries and at most p RO-programming queries. If the query
limit is unspecified, then it is (∞, 0) so that the object permits any number of RO queries but no RO-programming
queries. Objects program the RO by making queries matching the pattern (SET,M object). An object that makes
such queries is called (µ, ρ)-(X ,Y)-min-entropy if, for all such queries, the object M is always a (µ, ρ)-min-entropy
(X ,Y)-source. An object that makes no queries matching this pattern is not RO-programming (n.r.). �

To model a function H as a random oracle in an experiment, we revise the experiment by replacing each call
of the form “H( · · · )” with a call of the form “Ri( · · · )”, where i is the index of the RO in the shared resources of
the experiment, and R is the name of the resource oracle. When specifying a cryptographic scheme whose security
analysis is in the ROM, we will usually skip this rewriting step and simply write the specification in terms of Ri-
queries: to obtain the standard model experiment, one would instantiate the i-th resource with H instead of an
RO.

Lemma 1 (Lifting). Let ~I = (I1, . . . , Iu), ~J = (J1, . . . , Jv) be resources; let X ,Y be computable sets, where Y is
finite; let N = |Y|; let µ, ρ ≥ 0 be real numbers for which logN ≥ ρ; let q, p ≥ 0 be integers; let R and P be
random oracles for X ,Y with query limits (q + p, 0) and (q, p) respectively; let W,V be n.r. worlds; and let ψ be a
transcript predicate. For every tA-time, (a1, a2, ar)-query, n.d. adversary A and tS-time, (s2, sr)-query, (µ, ρ)-(X ,Y)-
min-entropy simulator S, there exist n.d. adversaries D and B for which

Advmainψ

W/~J
(A) ≤ ∆+ Advmainψ

V/~I . R
(B) + Advsr-indiff

ψ

W/~J,V/~I . P
(D,S) ,

where ∆ = p
[
(p+ q)/2−µ +

√
N/2ρ · log(N/2ρ)

]
, D is O(tA)-time and (a1+1, a2, ar)-query, and B is O(tAtS)-time

and (a1, a2s2, (a2 + ar)sr)-query.

Apart from dealing with RO programmability, which accounts for the ∆-term in the bound, the proof is essentially
the same argument as the sufficient condition in [104, Theorem 1] (cf. [129, Theorem 1]). The high min-entropy
of domain points programmed by the simulator ensures that RO-programming queries are unlikely to collide with
standard RO queries. However, we will need that range points are statistically close to uniform; otherwise the ∆-term
becomes vacuous. Note that ∆ = 0 whenever programming is disallowed.

Proof of Lemma 1. Let D = D(A) as specified in Figure 2.5. This adversary works by executing A with access to its
oracles and outputting 1 if A wins (that is, the output of W(WIN) on line 2.5:5 is 1). Then

Advmainψ

W/~J
(A) = Pr

[
Realwin

ψ

W/~J
(A)

]
+
(

Pr
[
Ref winψ

V/~I . P
(A,S)

]
− Pr

[
Ref winψ

V/~I . P
(A,S)

])
(2.2)

=
(

Pr
[
Real out

ψ

W/~J
(D)

]
− Pr

[
Ref outψ

V/~I . P
(D,S)

])
+ Pr

[
Ref winψ

V/~I . P
(A,S)

]
(2.3)

= Advsr-indiff
ψ

W/~J,V/~I . P
(D,S) + Pr

[
Ref winψ

V/~I . P
(A,S)

]
. (2.4)

Our goal for the remainder is to construct a MAINψ-adversary B from A and S whose advantage upper-bounds the
last term on the right hand side of Eq. (2.4). The main difficulty is that S might try to program R, which is not
allowed because R has query limit (q + p, 0). Our solution is to use the min-entropy of S in order transition into a
world in which its RO-programming queries are answered by standard RO queries.

Let R∗∗ be the object defined just like P except that it answers queries matching (SET,M object) as follows. If
j ≥ p then immediately halt and return ⊥. Otherwise run ((x, ), σ)← M( ) and increment j. If T [x] is undefined,
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spec D:
1 // In real: W points to W1; W′ to W2; R to resources
2 // In ref: W points to V1; W′ to V2; R to resources
3 var A object
4 op (SETUP): A(SETUP)

5 opW,W
′,R (1,OUT): AW,W

′,R
1 (OUT); ret W(WIN)

6 opW,W
′,R (2, x any): AW,W

′,R
2 (x)

spec B: //V points to V1; V′ to V2; R to resources

7 var A,S object
8 op (SETUP): S(SETUP); A(SETUP)

9 opV,V
′,R (1,OUT): ret AV,S2,S3

1 (OUT)

10 opV,V
′,R (2, x any): ret AV,S2,S3

2 (x)

interface R:
11 op (u+1, (SET,M object)):
12 ((x, ), σ)←M( ); ret ((x,Ru+1(x)), σ)
13 op (i int, x any): ret Ri(x)

procedure S(i, x):

14 ret SV
′,R

i (x)

spec Ro∗:
15 var X ,Y set, a bool, t, q, p int
16 var T,U, V table
17 var i, j int, bad bool
18 op (SETUP):
19 i, j ← 1; bad ← 0
20 T,U, V ← [ ]
21 op (x elemG):
22 if i ≥ q then ret ⊥
23 if T [x] = ⊥ then
24 i← i+ 1; T [x]←← Y
25 ret T [x]
26 op (SET,M object):
27 if j ≥ p then ret ⊥
28 j ← j + 1; ((x, y), σ)←M( )
29 if T [x] 6= ⊥ then bad ← 1
30 if a = 0 then ret ((x, T [x]), σ)
31 Uj ←← Y; Vj ← y
32 if j ≤ t then T [x]← Uj
33 else T [x]← Vj
34 ret ((x, T [x]), σ)

Figure 2.5: Reductions and hybrid experiment RO used in the proof of Lemma 1.

then set T [x] ←← Y exactly as the standard, call-for-value operator does. Finally, return ((x, T [x]), σ). Next we will
show that

Pr
[
Ref winψ

V/~I . P
(A,S)

]
≤ ∆+ Pr

[
Ref winψ

V/~I . R∗∗(A,S)
]
. (2.5)

For each a ∈ {0, 1} and t ∈ [0..p] let R∗a,t = Ro∗(X ,Y, a, t, q, p) as specified in Figure 2.5. Object R∗a,t works
like P except that the behavior of SET-queries depends on the parameters a, t. The first parameter, a, determines if
SET-queries overwrite key/value pairs already in the table. If a = 1, then when attempting to set a point (x, y) in
the table T , if T [x] is already defined then the value of T [x] will overwritten; otherwise T [x] stays the same. Thus,
a = 1 corresponds to the usual operation of programming queries, whereas a = 0 changes this behavior. The second
parameter, t, changes the distribution of values entered into the table as follows: each call matching (SET,M object)
following the t-th runs ((x, y), σ)←M( ) and sets T [x]← y in the usual manner for programming queries; for every
call preceding and including the t-th, the value of T [x] is sampled uniformly from Y.

Define the random variable Succa,t to be the outcome of Ref winψ

V/~I . R∗a,t
(A,S) for each a and t. The behavior of

R∗1,0 is identical to P ; and the behavior of R∗0,p is identical to R∗∗. Hence,

Pr
[
Succ1,0

]
= Pr

[
Ref winψ

V/~I . P
(A,S)

]
(2.6)

and
Pr
[
Succ0,p

]
= Pr

[
Ref winψ

V,~I . R∗∗(A,S)
]
. (2.7)

Our objective is to bound the probability of Succ1,0 as a function of the probability of Succ0,p. First, observe that
for a given t, the outputs of calls to R∗0,t and R∗1,t are identically distributed until the bad flag gets set. By the
fundamental lemma of game playing [33] we have that

Pr
[
Succ1,0

]
≤ Pr

[
Succ0,0

]
+ Pr

[
Ref winψ

V/~I . R∗1,0
(A,S) setsR∗1,0.bad

]
(2.8)

≤ Pr
[
Succ0,0

]
+
p(p+ q)

2µ
. (2.9)

Eq. (2.9) follows from the assumption that S is (µ, ρ)-(X ,Y)-min-entropy: the last term upper-bounds the probability
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that a programmed point collides with an existing point in the table. Next, observe that

Pr
[
Succ0,0

]
= Pr

[
Succ0,0

]
+

p∑
t=1

(
Pr
[
Succ0,t

]
− Pr

[
Succ0,t

])
(2.10)

Pr
[
Succ0,0

]
− Pr

[
Succ0,p

]
=

p−1∑
t=0

(
Pr
[
Succ0,t

]
− Pr

[
Succ0,t+1

])
(2.11)

≤ δp , (2.12)

where δ := max0≤t≤p−1 δt and δt :=
∣∣Pr
[
Succ0,t

]
− Pr

[
Succ0,t+1

]∣∣ . Let Ut = y denote the event that

Ref winψ

V/~I . R∗0,t
(A,S) setsR∗0,t.Ut = y

for each y ∈ Y, and define Vt = y in kind. We can use the statistical distance between Ut and Vt to upper-bound δt.
In particular, we claim that

δt ≤ 1

2

∑
y∈Y

∣∣Pr
[
Vt = y

]
− Pr

[
Ut = y

]∣∣ (2.13)

for all t ∈ [0..p− 1]. More generally, we have the following.

Claim 1. Let X be a computable set and let X and Y be random variables with support X . For every halting
object D it holds that Pr

[
D(X)

]
− Pr

[
D(Y )

]
≤ 1/2

∑
x∈X

∣∣Pr
[
X = x

]
− Pr

[
Y = y

]∣∣ .
Proof.1 Without loss of generality, we may rewrite D as a functional object F for which there is a set R and R-
source Ω such that Pr

[
D(X) = 1

]
= Pr

[
R ← Ω( ) : F (X,R) = 1

]
. Let R and S be independent random variables

distributed according to Ω, let B1 = (X,R), and let B0 = (Y, S). Let V = X ×R denote the support of B1 and B0.
Then

Pr
[
D(X)

]
− Pr

[
D(Y )

]
≤

∣∣Pr
[
F (B1)

]
− Pr

[
F (B0)

]∣∣ (2.14)

≤ max
f :V→{0,1}

∣∣Pr
[
f(B1) = 1

]
− Pr

[
f(B0) = 1

]∣∣ (2.15)

≤ max
W⊆V

∣∣Pr
[
B1 ∈ W

]
− Pr

[
B0 ∈ W

]∣∣ (2.16)

=
∣∣Pr
[
B1 ∈ W∗

]
− Pr

[
B0 ∈ W∗

]∣∣ , (2.17)

where W∗ denotes the subset of V that maximizes the quantity on the right hand side of Eq. (2.17), and Eq. (2.16)
is obtained by writing each f as a predicate f(v) 7→ v ∈ W for some W ⊆ V.

Let ξ :=
∣∣Pr
[
B1 ∈ W∗

]
− Pr

[
B0 ∈ W∗

]∣∣. Note that either W∗ = T or W∗ = V \ T , where T := {v ∈ V :

Pr
[
B1 = v

]
− Pr

[
B0 = v

]
≥ 0}. But, since

Pr
[
B1 ∈ T

]
+ Pr

[
B1 ∈ V \ T

]
= Pr

[
B0 ∈ T

]
+ Pr

[
B0 ∈ V \ T

]
(2.18)

by the law of total probability, we have that

Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]
= Pr

[
B0 ∈ V \ T

]
− Pr

[
B1 ∈ V \ T

]
(2.19)∣∣Pr

[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣ =
∣∣Pr
[
B1 ∈ V \ T

]
− Pr

[
B0 ∈ V \ T

]∣∣ (2.20)

ξ =
∣∣Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣ . (2.21)

By Eq. (2.18) again,

ξ =
∣∣Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣ (2.22)

=
1

2

( ∣∣Pr
[
B1 ∈ T

]
− Pr

[
B0 ∈ T

]∣∣+
∣∣Pr
[
B1 ∈ V \ T

]
− Pr

[
B0 ∈ V \ T

]∣∣ ) (2.23)

1The following argument is adapted from Daniel Wichs’ lecture notes.
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=
1

2

∑
v∈T

∣∣Pr
[
B1 = v

]
− Pr

[
B0 = v

]∣∣+
∑

v∈V\T

∣∣Pr
[
B1 = v

]
− Pr

[
B0 = v

]∣∣ (2.24)

=
1

2

∑
v∈V

∣∣Pr
[
B1 = v

]
− Pr

[
B0 = v

]∣∣ . (2.25)

Since X,R (resp. Y, S) are independently distributed and R,S are i.i.d.,

ξ =
1

2

∑
(z,r)∈V

∣∣Pr
[
X = z

]
Pr
[
R = r

]
− Pr

[
Y = z

]
Pr
[
S = r

]∣∣ (2.26)

=
1

2

∑
(z,r)∈V

∣∣Pr
[
R = r

]
·
(
Pr
[
X = z

]
− Pr

[
Y = z

])∣∣ (2.27)

=
1

2

∑
z∈X

∑
r∈R

Pr
[
R = r

]
·
∣∣Pr
[
X = z

]
− Pr

[
Y = z

]∣∣ (2.28)

=
1

2

∑
z∈X

∣∣Pr
[
X = z

]
− Pr

[
Y = z

]∣∣ . (2.29)

This concludes the proof of Claim 1. �

We can obtain a closed form for δt using Kullback-Leibler divergence [63]. Since Pr
[
Ut = y

]
= 0 implies

Pr
[
Vt = y

]
= 0 for all y ∈ Y, and since S is (µ, ρ)-(X ,Y)-min-entropy, we have that

δt ≤ 1

2

∑
y∈Y

∣∣Pr
[
Vt = y

]
− Pr

[
Ut = y

]∣∣ (2.30)

≤

√√√√1

2

∑
y∈Y

Pr
[
Vt = y

]
· log

(
Pr
[
Vt = y

]
Pr
[
Ut = y

]) (2.31)

≤

√√√√1

2

∑
y∈Y

2−ρ · log

(
2−ρ

N−1

)
(2.32)

=
√
N/2ρ+1 · log(N/2ρ) . (2.33)

Thus, δ ≤
√
N/2ρ · log(N/2ρ). Summarizing, we have

Pr
[
Ref winψ

V/~I . P
(A,S)

]
=

(
Pr
[
Succ1,0

]
− Pr

[
Succ0,0

])
+ Pr

[
Succ0,0

]
(2.34)

≤ p(p+ q)/2−µ + Pr
[
Succ0,0

]
(2.35)

= p(p+ q)/2−µ +
(

Pr
[
Succ0,0

]
− Pr

[
Succ0,p

])
+ Pr

[
Succ0,p

]
(2.36)

≤ p(p+ q)/2−µ + δp+ Pr
[
Succ0,p

]
(2.37)

≤ p
[
(p+ q)/2−µ +

√
N/2ρ · log(N/2ρ)

]
+ Pr

[
Ref winψ

V,~I . R∗∗(A,S)
]
. (2.38)

The final step is to bound the last term on the right hand side of Eq. (2.38). Observe that SET-operator queries
to R∗∗ can be simulated using the standard RO operator. In particular, let B = B(A,S) as specified in Figure 2.5.
Adversary B runs A, answering its queries as follows. Queries to the main interface are forwarded to B’s V oracle;
and queries to the auxiliary and resource interfaces are forwarded to the simulator S, which is run with B’s V ′ and R
oracles except that queries to R matching (u+1, (SET,M object)) are transformed into (u+1, x) queries, as shown on
line 2.5:12. (We call interface R a pure interface: it behaves much like a procedure, except that the input is matched
to one of its operators. Its syntax is given by term interface in Figure 2.1.) Since R has query limit q + p, 0, it follows
that

Pr
[
Ref winψ

V/~I . R∗∗(A,S)
]

= Pr
[
Realwin

ψ

V/~I . R
(B)

]
. (2.39)

To finish the proof, we need only to account for the resources of D and B. The runtime of D is O(tA + tW ), where
tW is the runtime of W , since it involves running A and the WIN-operator of W1 once. But tW ≤ tA because, by
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spec Wo: //R points to resources; A to A2

1 var G,X object
2 op (SETUP): G(SETUP); X(SETUP)
3 op (1,WIN): ret G1(WIN)
4 opA,R (1, x any): ret G1(x)
5 opA,R (2, x any): ret X2(x)

procedure X(i, x):
6 ret XG2,R

i (x)

procedure G(i, x):
7 ret GX1,A

i (x)
A

GX

~R

1
2

1

2

2

1

ψ(tx )

w

Wo(G,X)

Figure 2.6: Left: Specification Wo for building a world from a security game G and system X. Right: Who may call
whom in experiment RealΦ

W/~R
(A), where W = Wo(G,X).

convention, the runtime of A includes the time required to evaluate its queries. Hence, the runtime of D is simply
O(tA). The runtime of B is O(tA + (q2 + qr) · tS) if A makes at most q2 queries to the auxiliary interface and at
most qr to the resource. Since q2 + qr ≤ tA by convention (the adversary’s runtime includes the time needed to
evaluate its queries), it follows that the runtime of B is O(tA + tAtS) = O(2tAtS) = O(tAtS). �

2.4 Games and the Preservation Lemma

Lemma 1 says that indifferentiability of world W from world V means that security of V implies security of W .
This starting point is more general than the usual one, which is to first argue indifferentiability of some system X

from another system Y , then use the composition theorem of MRH in order to argue that security of Y for some
application implies security of X for the same application. Here we formalize the same kind of argument by specifying
the construction of a world from a system X and a game G that defines the system’s security.

A game is a halting object that exports a functional (1,WIN)-bool-operator. A system is a halting object.
Figure 2.6 specifies the composition of a game G and system X into a world W = Wo(G,X) in which the adversary
interacts with G’s main interface and X’s auxiliary interface, and G interacts with X’s main interface. The system X

makes queries to G’s auxiliary interface, and G in turn makes queries to the adversary’s auxiliary interface. As shown
in right hand side of Figure 2.6, it is the game that decides whether the adversary has won: when the real experiment
calls W1(WIN) on line 2.3:4, this call is answered by the operator defined by Wo on line 2.6:3, which returns G1(WIN).

Definition 8 (Gψ security). Let ψ be a transcript predicate, G be a game, X be a system, ~R be resources, and A
be an adversary. We define the Gψ advantage of A in attacking X/~R as

AdvG
ψ

X/~R
(A) :=Advmainψ

Wo(G,X)/~R
(A) .

We write AdvG
X/~R

(A) whenever ψ(tx ) = 1 for all tx . Informally, we say that X/~R is Gψ-secure if the Gψ advantage
of any efficient adversary is small. �

WorldWo formalizes the class of systems for which we will define security in this dissertation. While the execution
semantics of games and systems seems quite natural, we remark that other ways of capturing security notions are
possible. We are restricted only by the execution semantics of the real experiment (Def. 1). Indeed, there are natural
classes of security definitions we cannot capture, including those described by multi-stage games [129].

For our particular class of security notions we can prove the following useful lemma. Intuitively, the “preservation”
lemma below states that if a system X is ψ-indifferentiable from Y , then Wo(G,X) is ψ-indifferentiable from
Wo(G,Y ) for any game G.
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Lemma 2 (Preservation). Let ψ be a transcript predicate, X,Y be objects, and ~R, ~Q be resources. For every (g1, )-
query game G, tA-time, (a1, a2, ar)-query, n.d. adversary A, and simulator S there exists an n.d. adversary B such
that

Advsr-indiff
ψ

W/~R,V/~Q
(A,S) ≤ Advsr-indiff

ψ

X/~R,Y/~Q
(B,S) ,

where W = Wo(G,X), V = Wo(G,Y ), and B is O(tA)-time and (a1g1, a2, ar)-query.

Proof. Adversary B simulates the execution of A in its experiment as follows. On input of (SETUP), run G(SETUP)

and A(SETUP). On input of (1,OUT) with oracles X ,X ′,R, return A1(OUT), where A(i, x) = AG1,X ′,R
i (x) and

G(i, x) = GX ,A2
i (x). On on input of (2, x any) with oracles X ,X ′,R, return G2(x). By construction we have that

Pr
[
Real out

ψ

X/~R
(B)

]
= Pr

[
Real out

ψ

Wo(G,X)/~R
(A)

]
(2.40)

and
Pr
[
Ref outψ

Y/~Q
(B,S)

]
= Pr

[
Ref outψ

Wo(G,Y )/~Q
(A,S)

]
. (2.41)

The runtime of B is O(tA + tG) since B runs G(SETUP) on input of (SETUP). But because A’s runtime includes the
time needed to evaluate its oracle queries (i.e., evaluate calls to G), we have that B is O(tA)-time. �

2.4.1 The MRH Composition Theorem
In the remainder, we will use the preservation lemma in the following way. Given that some reference system Y is
Gψ-secure, we wish to know if the corresponding real system X is also Gψ-secure. We first apply Lemma 1, reducing
security to the ψ-indifferentiability of Wo(G,X) from Wo(G,Y ). We then apply Lemma 2, reducing security to the
ψ-indifferentiability of X from Y . This yields the composition theorem of MRH, but formulated for objects instead
of interacting systems.

Proposition 2 (Analogue of [104, Theorem 1]). The following conditions hold for all systems X,Y .

(1) (Indifferentiability is sufficient.) For every tG-time game G, tA-time, n.d. adversary A, and tS-time simula-
tor S there exist n.d. adversaries D and B for which AdvGX(A) ≤ AdvGY (B) + AdvindiffX,Y (D,S) , where D is
O(tA)-time, and B is O(tAtS)-time.

(2) (Indifferentiability is necessary.) For every tB-time adversary B, tD-time adversary D there exist an adver-
sary A, simulator S, and game Ĝ for which AdvindiffX,Y (D,S) +AdvĜY (B) ≤ AdvĜX(A) , where A is O(tD)-time,
S is O(tB)-time, and Ĝ is O(tD)-time.

Proof. Claim (1) is a corollary of Lemma 1 (letting q, p = 0 and ~I, ~J = ( )) and Lemma 2. We address the necessary
condition (claim (2)) in the remainder. Let A = A( ) and Ĝ = Ĝ(D) as specified in Figure 2.7. The world Ĝ works
by running D, answering its oracle queries using its own oracles. As shown in Figure 2.6, world Ĝ is given an oracle
for X1 in the real experiment, Y1 in the reference experiment, and A2 in both experiments.

Adversary A works by running D (via a query to Ĝ), relaying D’s A-queries to its own X -oracle. (See Figure 2.7
for an illustration.) Observe that A wins in the MAIN experiment exactly when Real outX (D) = 1. Thus,

Advmain
Wo(Ĝ,X)(A) = Pr

[
Real outX (D)

]
. (2.42)

Now consider the MAIN advantage of B in attacking Wo(Ĝ, Y ). Adversary B wins only if D outputs 1, which
occurs only if B asks (OUT) of its world’s main interface. In this case, B wins precisely when Ref out

Y (D,S) = 1,
where S = B. Then

Advmain
Wo(Ĝ,Y )(B) ≤ Pr

[
Ref out

Y (D,S)
]

(2.43)

and the claim follows. �

2.4.2 Exercise: Joint Security of Signing and Encryption
Let us consider a simple exercise that illustrates how our framework is used. Suppose we are given a scheme Π with
public/secret key pair (PK = gs, s) ∈ G×Z|G|, where G = (G, ·) is a finite, cyclic group with generator g ∈ G. It might
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spec Ĝ: //X points to X1 (resp. Y1); A to A2

1 var D object; d bool
2 op (SETUP): D(SETUP); d← 0
3 op (1,WIN): ret (d = 1)

4 opX ,A (1,OUT): d← DX ,A1 (OUT)

5 opX ,A (2, x any): ret DX ,A2 (x)

spec A: //D points to Ĝ1; X to X2

6 opD,X (1,OUT): D(OUT)
7 opD,X (2, x any): ret X (x)

A

DX 2
1

1

Ĝ

2 d

B

DY 2
1

2

12

1

Ĝ

S

d

Figure 2.7: Left: Specs for Proof of Proposition 2. Right: Illustration of the reduction.

spec Ẽx: //R points to resources spec Ex

1 var Π object, PK elemG , s int, init bool
2 op (SETUP): Π(SETUP); init ← 0
3 //Main interface (intended usage)
4 op ,R (1, INIT):
5 if init = 1 then ret ⊥
6 init ← 1; s←← Z|G|; PK ← gs; ret PK

7 op ,R (1, x any):
8 if init = 1 then ret ΠRs (x)
9 //Auxiliary interface (additional usage)

10 op (2, PK): ret PK

11 op ,R (2, SIGN,msg str):
12 if init = 0 then ret ⊥
13 r ←← Z|G|; t←R1(gr,msg)
14 ret (r − st, t)

spec Sim: //X points to X̃2; R to resources

15 var PK elemG
16 opX , (2, PK): ret X (PK)
17 opX ,R (2, SIGN,msg str):
18 PK ← X (PK)
19 if PK = ⊥ then ret ⊥
20 M ← Src(PK ,msg)
21 (( , t), x)←R1(SET,M); ret (x, t)
22 op ,R (3, (R elemG ,msg str)):
23 ret R1(R,msg)

spec Src:
24 var PK elemG , msg str
25 op ( ):
26 x, t←← Z|G|; R← gx · PK t

27 ret (((R,msg), t), x)

Figure 2.8: Left: Specifications Ex and Ẽx. Right: Specification of simulator S for the proof of Theorem 1.

be a public-key encryption (PKE) scheme, a digital signature (DS) algorithm, an authenticated key-exchange (AKE)
protocol, etc. Now suppose the same key pair is deployed for an additional application, say, Schnorr’s signature
scheme (cf. Figure 2.2). We are interested in how this additional usage of the secret key impacts the existing security
analysis for Π.2

System X̃ = Ẽx(Π) specified in Figure 2.8 captures the execution environment for Π in a security experiment.
Its main interface lets the caller (i.e., the game) generate a key pair (PK , s) via the INIT-operator on lines 2.8:4-6 and
make calls to Πs(·) via the operator on lines 2.8:7-8. Its aux. interface provides the caller (i.e., the adversary) with
access to PK (2.8:10). System X = Ex(Π) captures the same usage, except the adversary also gets a Schnorr-signing
oracle (via the aux.-interface) for the secret key s (2.8:11-14). Presumably, the first resource in the experiment is
instantiated with (a random oracle for) a hash function H : G × {0, 1}∗ → Z|G|.

Intuitively, the additional key usage captured by X should not significantly degrade the security of Π as long
the adversary’s interaction with the signing oracle cannot be used in an attack. We formalize this by exhibiting an
efficient simulation of signing queries. When modeling H as an RO, a well-known strategy is to sample x, t ←← Z|G|
and “program” the RO so that H(gx ·PK t,m) = t, thereby ensuring that the arithmetic relationship between x and t
is the same in the simulation as it is for the real signature. This strategy will fail if the programmed point overwrites
a previous query, but the chance of this is small for reasonable parameters.

Theorem 1. Suppose that Π is n.r. (not RO-programming). Then for every game G and tA-time, (a1, a2, ar)-query,
n.d. adversary A there exists a O((tA)2)-time, (a1, a2, a2 + ar)-query, n.d. adversary B for which AdvGX/H(A) ≤
AdvG

X̃/H̃
(B)+2a2(a2 +q)/|G| , where H (resp. H̃) is an RO from G×{0, 1}∗ to Z|G| with query limit (q, 0) (resp. (a2+

q, 0)).

2This is a more general form of a question first posed by Haber and Pinkas [82], who formalized the security of PKE and
DS schemes that share the same key pair.
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Proof. Let S = Sim( ) be as specified in Figure 2.8. This object simulates Schnorr signatures by calling R1(SET,M),
where source M = Src(PK ,msg) is specified in Figure 2.8. This source generates x, t and computes the inputs to
the RO just as described above and returns x as its hint. This causes the RO table T to be programmed so that
T [gs · PK t,msg ] = (x, t), where (x, t) is the signature returned by the simulator.

Let N = |G|. First, observe that S is (logN, logN)-min-entropy, since each source it uses to program the RO
chooses x and t uniformly and independently from ZN . The simulator is (1, 1)-query, since each of its operators
makes at one X -query (this points to X̃2 in the reference experiment) and at most one R1-query (this points to H).
Finally, its runtime is linear in the length of its inputs and in the computational cost of sampling elements of ZN and
performing the group operation in G. Because the runtime of A includes the time required to evaluate its SIGN-queries,
the runtime of S is O(tA).

Let P be an RO from G × {0, 1}∗ to ZN with query limit (q, a2). Let W = W(G,X) and W̃ = Wo(G, X̃). By
Lemma 1 there exist n.d. adversaries B and D′ such that

AdvGX/H(A) ≤ a2(a2 + q)/N + AdvGX̃/H̃(B) + Advsr-indiff
ψ

W/H,W̃/P (D′, S) , (2.44)

where D′ is O(tA)-time and (a1+1, a2, ar)-query, and B is O((tA)2)-time and (a1, a2, a2 + ar)-query. Suppose that G
is (g1, ga)-query. Then by Lemma 2 there exists a O(tA)-time, ((a1+1)g1, a2, ar)-query, n.d. adversary D for which

Advsr-indiff
ψ

W/H,W̃/P (D′, S) ≤ Advsr-indiff
ψ

X/H,X̃/P (D,S) . (2.45)

To complete the proof, we argue that

Advsr-indiff
ψ

X/H,X̃/P (D,S) ≤ a2(a2 + q)/N (2.46)

for every such D. Observe that the simulation of the SIGN-operator provided by S is indistinguishable from the
real operator as long as S never overwrites a point already set in the RO. Because each source specified by S is
(logN, logN)-min-entropy and there are at most a2 + q distinct points in the RO table at any one time in the
experiment, the probability that some point gets overwritten is at most a2(a2 + q)/N . �

Remark 1. For the sake of presentation, the bound in Theorem 1 is expressed in terms of a query limit enforced by
the RO. Normally we will allow the query limit to be unbounded so that the security bound is expressed in terms of
the adversary’s resources (e.g., Theorem 4). �
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Chapter 3

Unspecified Behavior

As protocols like TLS have evolved, so have the formal tools used to analyze them. Often it is the protocol standards
themselves, rather than implementations, that inspire and guide mathematical abstractions of these protocols; but
their complexity makes the task of developing these abstractions quite challenging and prone to missing subtle attacks.
Much of this complexity stems from the fact that protocols are only partially specified. The TLS 1.3 standard [123],
whose record layer mechanism is the subject of this chapter, contains numerous “SHOULDs”, “SHOULD NOTs” and
“MAYs.” Each of these provides a guideline, but not a rule (those are “MUSTs” and “MUST NOTs”), for compliant
realizations of the standard. In this way, the TLS standard leaves many implementation details unspecified. This
presents an important and interesting challenge for provable security: namely, deciding which of the standard’s
guidelines and unspecified behaviors are relevant to security, and so should be captured in the formal specification of
the protocol.

The implications of these modeling choices are often clear only after an attack is found, leading to what Degabriele
et al. call the “model-attack-remodel cycle” [64]. A prominent example is the case of padding-oracle attacks [146],
which exploit weaknesses in the MAC-then-encrypt mode of operation used for authenticated encryption in many
early secure channel protocols. This mode is provably secure [114], but only in a model in which decryption does
not surface distinguishable errors. Yet compliant implementations of these protocols did make visible the cause of
decryption failures (in particular, whether the encoding was invalid or the MAC was incorrect), leading to plaintext-
recovery attacks [146, 66, 112]. The research community reacted by incorporating distinguishable errors into updated
models [49, 75], but left more subtle attack vectors unaddressed [10], leading in turn to more sophisticated models [83,
18].

This reactive evolution of the security model is to be expected, but since standards only partially specify the
protocol, it is hard to anticipate where vulnerabilities might arise in implementations. The Partially Specified Protocol
(PSP) framework of Rogaway and Stegers [130] (introduced in Chapter 1) affords a more proactive approach that
makes an explicit distinction in the security model between the parts of the standard that must be implemented
correctly and those details which may be gotten wrong without impacting the security proof. In this chapter we
provide a demonstration of this methodology in which we fully account for the unspecified behavior of the TLS 1.3
record layer [123].

Security Model for Secure Channels. Our formal model is described in §3.1. Its starting point is the stream-based
channel abstraction introduced by Fischlin et al. [75] (hereafter FGMP). Their syntax accurately captures the APIs
exposed by implementations of secure channels, in that it treats the sender- and receiver-side inputs and outputs as
streams of message fragments, as opposed to atomic messages processed all at once. (It also admits distinguishable
error messages.) We extend their syntax (cf. Def. 9) in order to account for multiplexing of many data streams over
the same channel, as this is an essential feature of many secure channel protocols (including TLS).

We extend the FGMP notions of privacy and integrity to account for multiplexing. There are two main flavors of
privacy (see Def. 10): the first, PRIV-S, is analogous to indistinguishability under chosen-plaintext attack, since the
adversary only controls the sender’s inputs; in the second, PRIV-SR, we also allow the adversary to mount chosen-
ciphertext-fragment attacks. With each of these, we consider different “degrees” of privacy corresponding to various
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security goals considered in prior works [114, 75, 67]. We also consider integrity of the ciphertext stream written to
the channel (INT-CS, Def. 11). Following FGMP, we show (in Lemma 3) how to achieve PRIV-SR security from
a scheme that is both PRIV-S and INT-CS secure; just as with FGMP, we will need an additional property called
status simulatability (SIM-STAT, Def. 12). Our notions are applicable to settings in which reliable transport (e.g., via
TCP) is expected, and failure of the underlying transport mechanism to deliver stream fragments in order is deemed
an attack (as in TLS and SSH1 [103]).

Our Results. A number of behaviors not specified by the TLS 1.3 standard are relevant in the adversarial model of
FGMP. For example, there are explicit rules that govern the manner in which plaintext fragments are buffered and
coalesced into atomic plaintext records, but the specification leaves many design choices up to the implementation.
We found the definitional viewpoint of the PSP methodology to be a useful tool for determining which pieces of
the record layer specification are security critical and which are not. In particular, our analysis (Theorem 2, §3.2)
uncovers two subtle and security-critical matters. First, the degree of privacy the record layer can provably provide
depends intrinsically on unspecified behavior. The record layer is used to multiplex distinct plaintext streams over
the same channel; thus, each record has a content type that associates the content to its stream. The content type is
encrypted along with the content itself, permitting implementations that, at least in principle, hide both the content
and its type. But the specification admits implementations that leak the content type entirely. Roughly speaking,
this leakage occurs because the boundaries between records depend on the content type of each record. In general,
we can conclude only that the record layer ensures privacy of the contents of each of the data streams.

Second, following FGMP, our notion of ciphertext-stream integrity implies that the receiver only consumes the
stream produced by the sender. Records written to the channel are delimited by strings called record headers, whose
values are specified by the standard. Our analysis applies to a draft of the unfinished standard (draft-ietf-tls-tls13-
23 [124]) in which the header was not authenticated, and the standard did not require the receiver to check that their
values for correctness. This early draft does not achieve our strong notion of ciphertext-stream integrity, although
intuitively, the value of these bits should not impact security. Our framework provides a clean way to reconcile
this intuition with our model: we show that the value of these bits are indeed irrelevant if and only if they are
authenticated. (As we discuss in §3.2, this observation lead to a change in the final version of the standard, RFC
8446 [123].)

Limitations. Our analysis of TLS 1.3 demonstrates the effectiveness of the PSP methodology as a tool for taming
the complexity of cryptographic standards—in particular, for dealing with unspecified behavior. Nevertheless, the
TLS standard is subject to changes that our analysis would not account for. In §3.3 we discuss some limitations of
our analysis and how the translation framework (presented in Chapter 2) could be used to overcome them.

Related Work. Our model for secure channels extends a long line of work: here we summarize some of the important
landmarks in the development of the theory. In 2000, Bellare and Namprempre [26] provided foundations for the study
of probabilistic authenticated encryption (AE) schemes used in SSL/TLS, IPSec [136], and SSH. Shortly thereafter,
Rogaway [131] embellished authenticated encryption to take associated data (AEAD), moving the primitive closer to
practice. Yet it was already understood that an AEAD scheme and its attendant notions of privacy and integrity do
not suffice for building secure channels. In 2002, Bellare, Kohno, and Namprempre (BKN) [24] formalized stateful
AE in order to account for replay and out-of-order delivery attacks, as well as to model and analyze SSH. Their
model regards ciphertexts as atomic, but ciphertexts written to the channel may be (and routinely are) fragmented
as they traverse the network, which leaves these protocols susceptible to attacks [9]. Likewise, the APIs for real
secure channels regard the input plaintext as a stream, meaning that a single logical plaintext may be presented as
a sequence of fragments, too. It took another ten years for the model to be significantly extended, by Boldyreva
et al. [48], to address ciphertext fragmentation and attacks that exploit it. Finally, in 2015 by FGMP formalized
stream-based secure channels that address plaintext fragmentation, with updates provided in 2016 by Albrecht et
al. [8]. As FGMP point out [76], these works help shed formal light on truncation [140] and cookie-cutter [43] attacks.

From the standpoint of scope, the work most closely related to ours is Delignat-Lavaud et al. [67], who provide
a mechanized proof of security for the TLS 1.3 record layer (draft-18). Our work is technically different from theirs
on a couple fronts. First, our analysis applies to the set of compliant implementations (corresponding to different
realizations of the specification details), whereas their work applies only to their implementation. Our notions are

1Secure SHell.
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also more flexible: we capture the goal of hiding the message length as one of many possible privacy goals, whereas
this property is mandatory in their security notion. Second, our adversarial model is stronger in that it permits
fragmentation of the plaintext and ciphertext streams.

In an analysis of TLS 1.2, Paterson et al. [114] put forward a notion of stateful, length-hiding AE that admits
schemes with associated padding (to hide the plaintext length) and variable-length MACs, both features of TLS 1.2.
Their formalism necessarily elides a number of details of the protocol.

Badertscher et al. [13] characterize the TLS 1.3 record layer as an “augmented” secure channel (ASC), which
allows for sending a message with two parts: the first being private, and both parts being authenticated. Their paper
applies to draft-08, which mandated that the record sequence number, content type, and record version are all in the
scope of the associated data for the AEAD computation. The content type was removed from the associated data in
draft-09 and the sequence number and record version were removed in draft-11, leaving the associated data empty in
draft-23 (the subject of our study).

Bellare and Tackmann analyze the multi-user security of the TLS 1.3 record layer [34], shedding light on the
following question: if the same message is encrypted in a number of sessions, then what information does this leak
about the sessions? A popular TLS endpoint might serve billions of clients a day. Many of these flows are identical
(such as the initial GET); thus, an adversary who observes these identical flows can try to guess the key used for
one of the clients. Its odds are improved by the sheer number of clients encrypting an identical message. This attack
lead the designers of TLS 1.3 to “randomize” the IV used for generating the nonce: Bellare and Tackmann analyze
the concrete security of this approach in the multi-user setting.

Preliminary Work. A preliminary version of the analysis in this chapter appears at CCS 2018 [116]. Here we
have recast the security notions in the translation framework, simplified the specification of the record layer, and
regenerated its proof of security.

3.1 Partially Specified Channels
Building on FGMP [75], our syntax models the computations of a sender and receiver communicating over an insecure
(but reliable) channel. We assume the communicants are in possession of a shared secret, generated as specified by
the scheme.

3.1.1 Syntax and Execution Environment

Definition 9 (Channels). A channel is a halting object Λ that exports the following operators:

– (GEN)-(K any): generates a key K shared by the sender and receiver. This operator is stateless.

– (K any,MUX,msg , ctx str)-(x str, α any): inputs a stream fragment msg and stream context ctx and returns
a pre-channel fragment x and auxiliary information α. We call this the (stream-)multiplexing operator.

– (K any,WRITE, x str, α any)-(c str, γ any): inputs a pre-channel fragment x and auxiliary information α and
returns a channel fragment c and status information γ. We call this the (channel-)writing operator.

– (K any, READ, c str)-(y str, α any): inputs a channel fragment c and returns a channel fragment y and
auxiliary information α. We call this the (channel-)reading operator.

– (K any,DEMUX, y str, α any)-(msg , ctx str, γ any): inputs a channel fragment y and auxiliary informa-
tion α and returns a stream fragment msg , its context ctx , and status information γ. We call this (stream-
)demultiplexing operator. �

Explanation. The input to the sender is a sequence of message fragments and the context of each fragment, the
latter identifying the stream to which the fragment belongs. Here the interpretation of “identity” is up to the channel:
for TLS, the context corresponds to fragment’s content type (cf. §3.2.1). The stream multiplexer’s task is to coalesce
this sequence of stream fragments into a sequence of pre-channel fragments, which are consumed by the channel
writer. The output of the channel writer is a sequence of channel fragments, which are consumed by the receiver.
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spec Chan: //A points to A2 (via G2); R to resources

1 var Γ,Send ,Recv object, K any
2 op (SETUP): Γ (SETUP)
3 opA,R (1, INIT):
4 K ← ΓA,R(GEN)
5 Send ← Recv ← Γ
6 op ,R (1, RO, x any): ret R(x)

7 opA,R (1, SEND,msg , ctx str):
8 (x, α)← SendA,RK (MUX,msg , ctx )

9 (c, γ)← SendA,RK (WRITE, x, α)
10 ret (x, c, γ)
11 opA,R (1, RECV, c str):
12 (y, α)← RecvA,RK (READ, c)

13 (msg , ctx , γ)← RecvA,RK (DEMUX, y, α)
14 ret (y,msg , ctx , γ)

spec Priv-S: //X points to X1; A to A2 Priv-SR
15 var ` object, b, w, init , guess, sync bool; s str
16 op (SETUP): b←← {0, 1}
17 w, init , guess ← 0; sync ← 1; s← ε
18 op (1,WIN): ret w
19 op (1,GUESS, d bool):
20 if guess 6= 1 then guess ← 1; w ← (b = d)
21 opX (1, INIT): if init 6= 1 then init ← 1; ret X (INIT)
22 opX (1, SEND,msg1, ctx1,msg0, ctx0 str):
23 if init 6= 1 then ret (⊥,⊥)
24 if `(msg1, ctx1) 6= `(msg0, ctx0) then ret (⊥,⊥)
25 ( , c, γ)← X (SEND,msgb, ctx b)
26 s← s ‖ c; ret (c, γ)

27 opX (1, RECV, c str):
28 if init 6= 1 then ret (⊥,⊥,⊥)
29 (y,msg , ctx , γ)← X (RECV, c)
30 if sync = 1 ∧ y � s then
31 s← s % y; ret (⊥,⊥, γ)
32 else sync ← 0; ret (msg , ctx , γ)

33 op ,A (2, x any): ret A(x)

spec Int-CS:
34 var w, init , sync bool, s str
35 op (SETUP): w, init ← 0; sync ← 1; s← ε
36 op (1,WIN): ret w
37 opX (1, INIT): if init 6= 1 then init ← 1; ret X (INIT)
38 opX (1, SEND,msg , ctx str):
39 if init 6= 1 then ret (⊥,⊥)
40 ( , c, γ)← X (SEND,msg , ctx )
41 s← s ‖ c; ret (c, γ)
42 opX (1, RECV, c str):
43 if init 6= 1 then ret (⊥,⊥,⊥)
44 (y,msg , ctx , γ)← X (RECV, c)
45 if sync = 1 ∧ y � s then
46 s← s % y
47 else
48 sync ← 0
49 w ← w ∨ (msg 6= ⊥ ∧ ctx 6= ⊥)
50 ret (msg , ctx , γ)
51 op ,A (2, x any): ret A(x)

Figure 3.1: Top: Execution environment Chan(Λ) for channel Λ. Bottom: Games Priv-S, Priv-SR, and Int-CS
used to define various security properties for channels. Object ` is functional and halting.

The channel reader’s task is to buffer channel fragments until one is ready to be processed: its output (also a channel
fragment) is passed to the stream demultiplexer.

Execution of a Unidirectional Channel. System X = Chan(Λ) defined in Figure 3.1 formalizes the execution
of a channel Λ in the security experiments defined in this chapter. Communication flows in one direction: from
the sender, denoted by Send ; to the receiver, denoted by Recv . The system exports four operators via its main
interface (i.e., the interface called by the game in the security experiment). The first, INIT, generates a key according
to Λ and stores it as K. The second, RO, provides the game with access to the shared resources defined externally
in the encompassing experiment. (See “ ~R” in Figure 1.1.) The third operator, SEND (3.1:7-10), takes as input a
stream fragment msg and its context ctx and executes the multiplexing and writing operators; the resulting channel
fragment c and status info γ are returned as output. In addition, the operator returns the pre-channel fragment x
output by the multiplexing operation. The last operator, RECV (3.1:11-14), takes as input a channel fragment c
and executes the reading and demultiplexing operators; the resulting stream fragment msg , stream context ctx , and
status info γ are returned as output. In addition, the operator returns the channel fragment y output by the reading
operation.

Let us unpack this system a bit. The intermediate outputs x, y do not serve a functional purpose, but a technical
one in definitions of security: in particular, the channel fragment y output by the SEND-operator will be used to
determine if the channel is “in-sync” (cf. §3.1.2). The status information γ allows the sender and receiver to surface
information for applications about the state of the channel. Making this information explicit in the syntax and
execution environment allows us to model distinguishable decryption errors [49], an attack vector that has heavily
influenced the development of secure channels [146, 66, 112, 10]. Our treatment is inspired by Barwell et al. [18], whose
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“subtle AE” setting models decryption leakage in a manner general enough to capture error indistinguishability [49, 75],
as well as other settings for authenticated encryption [12, 83].

Remark 2. Absent from our syntax and execution semantics for channels is a notion of correctness. Indeed, because
we allow channels to be partially specified (i.e., defined in terms of calls to the adversary’s auxiliary interface),
security is defined even for channels for which the adversary’s SD-oracle responses may result in incorrect operation.
One consequence of this modeling choice is that we cannot assume correctness in our security proofs, as do Bellare-
Namprempre [26, Theorem 3.1] in the case of stateless and randomized AE, and FGMP [76, Appendix C] for stream-
based channels. �

3.1.2 PRIV-SR and PRIV-S Security
We recast the privacy notions of FGMP to address multiplexing of plaintext data streams. Our PRIV-SR notion,
specified by Priv-SR in Figure 3.1, gives the adversary access to a pair of operators. The first, SEND, allows the
adversary to provide the sender with arbitrary stream fragment/context pairs. Analogously, the RECV-operator allows
the adversary to deliver arbitrary channel fragments to the receiver. We define PRIV-S (Priv-S) the same way, except
that the adversary does not have access to the RECV-operator. PRIV-S captures chosen plaintext attack security only,
while PRIV-SR additionally captures a chosen ciphertext attack capability.

Channel Synchronization. Following prior work [24, 48, 75] we keep track of whether the channel is “in-sync”
at any given moment during the adversary’s attack. Loosely, the channel is said to be in-sync if the ciphertext
“consumed” by the receiver, so far, is a prefix of the ciphertext output by the sender. In order to avoid trivial
distinguishing attacks in the PRIV-SR game, it is necessary to suppress the message fragments output by the receiver
while the channel is in-sync. We say the channel is in-sync as long as the sequence of channel fragments output by
the channel reader is a prefix of the ciphertext stream output by the channel reader so far. Thus, the channel reader
models receiver-side buffering and defragmentation of the channel.

Remark 3. This restricts the behavior of the receiver-side code in a way not seen in FGMP or its predecessors, but the
restriction is relatively minor: a natural division of labor is to have the channel-reading operator buffer the ciphertext
stream and output ciphertexts that are ready to decrypt; the job of stream demultiplexer, then, is to decrypt and
process the output streams. This cleanly separates the tasks of “buffering” and “consuming” the ciphertext. The
alternative would be to leave the receiver operations atomic, as FGMP have done. But this leads to much more
complex security notions, as it requires handling synchronicity for a number of different cases (cf. [76, Def. 4.1]). �

Leakage Parameter. Our privacy notions are parameterized by an object `, called the leakage parameter, that
dictates the level of privacy required for security. As shown in Figure 3.1, the game’s SEND-operator formalizes a left-
or-right-style indistinguishability property: the adversary provides two stream fragment/context pairs to its oracle,
only one of which is processed; and the pair that is processed depends on the outcome of a coin flip performed at the
start of the experiment. A “valid” SEND-query (msg1, ctx1,msg0, ctx0) is one for which `(msg1, ctx1) = `(msg0, ctx0),
i.e., the leakage of the left input is the same as the right. Intuitively, the less information that ` preserves about its
inputs, the stronger the privacy requirement. For example, if ` computes the map (msg , ctx ) 7→ (|msg |, ctx ), then
this permits channels that leak the length and context of each stream fragment. (As we will show in §3.2, this level of
leakage is typical for implementations of secure channels.) On the other hand, the leakage parameter that computes
the map (msg , ctx ) 7→ > hides both the length and context of each fragment, a level of security required in some
security models [114, 67].

Refer to Priv-SR defined in Figure 3.1. Let Λ be a channel and let ` be a functional, halting object. Let
X = Chan(Λ), G = Priv-SR(`), and W = Wo(G,X). Then world W specifies an adversary’s capabilities in
attacking the privacy of Λ with leakage parameter `. The experiment begins by choosing a random bit b (via SETUP)
and generating a secret key and distributing it to the sender and receiver (via a call to the INIT-operator of the main
interface; see line 3.1:21). Thereafter, the adversary interacts with two operators.

The first, SEND (3.1:22-26), operates on quadruples of strings (msg1, ctx1,msg0, ctx0). If the query is valid, then
it computes ( , c, γ)← X (SEND,msgb, ctx b), where X points to X1, and returns (c, γ) to the adversary. The channel
fragment c is appended to a string s, which keeps track of the ciphertext stream produced by the sender but not yet
consumed by the in-sync receiver.
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spec Sim-Stat: //X points to X1; A to A2

1 var S object; b, w, init , guess bool, s str
2 op (SETUP): b←← {0, 1}
3 S(SETUP); w, init , guess ← 0; s← ε
4 op (1,WIN): ret w
5 op (1,GUESS, d bool):
6 if guess 6= 1 then guess ← 1; w ← (b = d)
7 opX (1, INIT): if init 6= 1 then init ← 1; ret X (INIT)
8 opX (1, SEND,msg , ctx str):
9 if init 6= 1 then ret (⊥,⊥)

10 ( , c, γ)← X (SEND,msg , ctx )
11 s← s ‖ c; ret (c, γ)

12 opX ,A (1, RECV, c str):
13 var γ any
14 if init 6= 1 then ret ⊥
15 if b = 1 then
16 ( , , , γ)← X (RECV, c)
17 else
18 γ ← SA(s, c)
19 ret γ
20 op ,A (2, x any): ret A(x)

Figure 3.2: Specification Sim-Stat for defining SIM-STAT security.

The second operator, RECV (3.1:27-32), operates on channel fragments c. It first computes (y,msg , ctx , γ) ←
X (RECV, c). Then, if the channel is in-sync (i.e., sync = 1) and the channel fragment y is a prefix of s (y � s), then
the first |y| bits of s are removed from s and the operator returns (⊥,⊥, γ) (3.1:31). This effectively suppresses the
receiver’s output while the channel is in-sync, thereby preventing the adversary from decrypting challenge ciphertexts.
If the channel is out-of-sync or the channel is in-sync but y is not a prefix of s, then the channel is declared to be
out-of-sync and the operator outputs (msg , ctx , γ), i.e., it does not suppress the output. Eventually the adversary
guesses the value of b by making a query to the game’s GUESS-operator.

Our model allows us to formalize channels that are only partially specified, as follows. Whenever a channel
operation is executed, it is given oracle access to the adversary’s auxiliary interface for making SD queries. These
queries (made on lines 3.1:4, 8-9, and 12-13) are “routed” by the system to the game, which simply forwards them to
the adversary (3.1:33).

Definition 10 (PRIV-SR` and PRIV-S` security). Let Λ be channel and ` be a leakage parameter. LetX = Chan(Λ)

and let ~R be resources. Define the PRIV-SR` advantage of adversary A in attacking Λ/~R as

Advpriv-sr
`

Λ/~R
(A) := 2AdvPriv-SR(`)

X/~R
(A)− 1 .

Likewise, Define the PRIV-S` advantage of adversary A in attacking Λ/~R as

Advpriv-s
`

Λ/~R
(A) := 2AdvPriv-S(`)

X/~R
(A)− 1 .

Informally, we say that Λ/~R is PRIV-SR` secure (resp. PRIV-S` secure) if the advantage of every efficient adversary
is small. �

3.1.3 INT-CS Security

Figure 3.1 defines another game Int-CS that captures the integrity of the ciphertext stream produced by the sender.
Let Λ be a channel, let X = Chan(Λ), let G = Int-CS( ), and let W = Wo(G,X). World W specifies an adversary’s
capabilities in attempting to break the ciphertext-stream integrity of Λ. Its goal is to fool the receiver into outputting
a stream fragment while the channel is out-of-sync. The experiment begins by generating a key and distributing it
to the sender and receiver. Thereafter, the adversary interacts with SEND- and RECV-operators defined in much the
same way as in the privacy games, except that the SEND-operator only takes in a single stream fragment/context pair
(msg , ctx ). The RECV-operator sets a flag w if ever the channel is out-of-sync (i.e., sync = 0) and the receiver outputs
a stream fragment/context pair.

Definition 11 (INT-CS security). Let Λ be channel, let X = Chan(Λ), and let ~R be resources. Define the INT-CS
advantage of adversary A in attacking Λ/~R as Advint-cs

Λ/~R
(A) :=AdvInt-CS( )

X/~R
(A) . Informally, we say that Λ/~R is

INT-CS secure if the advantage of every efficient adversary is small. �

40



3.1.4 SIM-STAT Security and a Generic Composition
If a channel is INT-CS secure, then an efficient attacker can do nothing but deliver the honestly produced ciphertext
stream in the correct order. Thus, any channel that is both PRIV-S secure and INT-CS secure ought to be PRIV-SR
secure as well, since the RECV-operator in the PRIV-SR experiment is useless to the attacker. This is almost true: the
wrinkle is that the RECV-oracle returns status information in addition to the stream fragment and context. As in the
FGMP setting, our syntax does not restrict the receiver (in particular, the demultiplexing operation) to return just
one status message. Moreover, the status message may depend on the receiver state (of which a PRIV-S adversary
would be ignorant), or be influenced by the adversarially controlled SD. In this section we give a notion for channels
called SIM-STAT and show that it, PRIV-S, and INT-CS imply PRIV-SR.

The notion naturally captures what the adversary learns from the receiver’s state by observing the status messages
it outputs. It is inspired by ideas put forward in the subtle AE setting [18] and naturally generalizes a notion of
FGMP. Let Λ be a channel, let X = Chan(Λ), let S be a simulator, let G = Sim-Stat(S) as specified in Figure 3.2,
and let W = Wo(G,X). An adversary wins in world W if it correctly distinguishes the status information output
by the receiver from the output of a simulator. The simulator has oracle access to the adversary’s auxiliary interface
(via A) and gets as input the ciphertext stream s produced by the sender so far, as well as the incoming channel
fragment c input to the receiver. These values allow the simulator to determine if the channel is in-sync.

Definition 12 (SIM-STAT security). Let Λ be a channel, S a simulator, and ~R be resources. Let X = Chan(Λ).
Define the SIM-STAT advantage of adversary A in attacking Λ/~R relative to S as

Advsim-stat
Λ/~R

(A,S) := 2AdvSim-Stat(S)
X/~R

(A)− 1 .

Informally, we say that Λ/~R is SIM-STAT secure if for every efficient adversary A there exists an efficient simulator S
such that A’s advantage in attacking Λ/~R relative to S is small. �

Composition. The following lemma relates the PRIV-SR` security of a channel to its PRIV-S`, INT-CS, and
SIM-STAT security. The result is analogous to, but more general than, [76, Theorem 4.5]. It also confirms a
conjecture of FGMP (cf. [76, Remark 4.6]).

Lemma 3. Let Λ be a channel, ~R be resources, and ` be a leakage parameter. For every tA-time, n.d. adver-
sary A making q1 SEND-queries, q2 RECV-queries, and qr resource queries, and every tS-time simulator S, there exist
n.d. adversaries B, C, and D such that

Advpriv-sr
`

Λ/~R
(A) ≤ Advpriv-s

`

Λ/~R
(B) + 2Advint-cs

Λ/~R
(C) + 2Advsim-stat

Λ/~R
(D,S) ,

where B is O(tA + q2tS)-time and makes q1 SEND-queries and qr resource queries and C and D are O(tA)-time and
make q1 SEND-, q2 RECV-, and qr resource queries.

Proof. At a high level, the idea is to construct a PRIV-S`-adversary B from A, answering its RECV-queries using the
simulator S. We will use INT-CS and SIM-STAT security to transition to an experiment in which this reduction can
work. We proceed by a game-playing argument.

Experiment 0. We begin with a procedureG0 defined just likeRealwin
W/~R

(A), whereW = Wo(Priv-SR(`),Chan(Λ)),
except that the RECV-operator of Priv-SR is replaced with the code in the left panel of Figure 3.3. It is identical
to the real experiment except that it sets flags w and bad if ever the channel is out-of-sync and the receiver outputs
a stream fragment/context pair (msg , ctx ) such that msg 6= ⊥ ∧ ctx 6= ⊥. Spec Priv-SR is modified accordingly so
that it declares variables bad , w bool. As this does not change the outcome of the experiment, we have that

Advpriv-sr
`

Λ/~R
(A) = 2 Pr

[
G0(A)

]
− 1 . (3.1)

Revision 0-1. Define experiment G1(A) from G0(A) by adding the statement “msg ← ctx ← ⊥” immediately after
bad gets set. We can easily construct a O(tA)-time, n.d. adversary C, with the same query complexity as A, that
wins whenever bad gets set. Hence, by the fundamental lemma of game playing [33],

Pr
[
G0(A)

]
≤ Pr

[
G1(A)

]
+ Advint-cs

Λ/~R
(C) . (3.2)
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1 opX ,A (1, RECV, c str): G0

2 if init 6= 1 then ret (⊥,⊥,⊥)
3 (y,msg , ctx , γ)← X (RECV, c)
4 if sync ∧ y � s then
5 s← s % y; ret (⊥,⊥, γ)
6 else
7 sync ← 0
8 w ← w ∨ (msg 6= ⊥ ∧ ctx 6= ⊥)
9 if w = 1 then bad ← 1

10 ret (msg , ctx , γ)

11 opX ,A (1, RECV, c str): G1 G2

12 if init 6= 1 then ret (⊥,⊥,⊥)

13 ret (⊥,⊥, SA(s, c))

14 (y,msg , ctx , γ)← X (RECV, c)
15 if sync ∧ y � s then
16 s← s % y; ret (⊥,⊥, γ)
17 else
18 sync ← 0
19 w ← w ∨ (msg 6= ⊥ ∧ ctx 6= ⊥)
20 if w = 1 then bad ← 1; msg ← ctx ← ⊥
21 ret (msg , ctx , γ)

Figure 3.3: Specifications for proof of Lemma 3.

Observe that, in the revised experiment, the RECV-operator outputs msg = ⊥ and ctx = ⊥ regardless of whether the
channel is in-sync. This is precisely the behavior of the RECV-oracle in the SIM-STAT experiment when b = 1.

Revision 1-2. DefineG2(A,S) fromG1(A) by replacing the code for computing γ with execution of the simulator S,
as shown in the right panel of Figure 3.3. This is precisely the behavior of the RECV-oracle in the SIM-STAT experiment
when b = 0. There exists a O(tA)-time, n.d. adversary D, with the same query complexity as A, for which

Pr
[
G0(A)

]
≤ Pr

[
G2(A,S)

]
+ Advsim-stat

Λ/~R
(D,S) + Advint-cs

Λ/~R
(C) . (3.3)

Adversary C runs A, answering its queries using its own oracle interfaces. When A asks a query matching

(SEND,msg1, ctx1,msg0, ctx0 str)

to its main interface, C first verifies that `(msg1, ctx1) = `(msg0, ctx0), then returnsW(SEND,msgd∗ , ctxd∗), where d∗

is a random bit chosen by C during setup and W is the name of the main-interface given to A. When A asks
(GUESS, d bool), adversary C asks W(GUESS, (d = d∗)) and halts. In other words, it guesses that its RECV-queries are
being answered as usual (i.e., that b = 1 is its challenge bit) if A wins in its experiment; if A does not win, then C
guesses that its queries are being answered by the simulator (i.e., that b = 0).

Experiment 2. We construct a O(tA + q1tS)-time, (q1, 0, qr)-query PRIV-S`-adversary B for which the claim holds.
On (SETUP), run A(SETUP); S(SETUP); and s ← ε. On (1,WIN) with oracle interfaces W, ,R, return AW, ,R

1 (WIN).
On input of (2, x any) with oracle interface , ,R, return A , ,R

2 (x). Adversary A’s queries to W are answered as
follows. On any input matching (SEND,msg1, ctx1,msg0, ctx0 str): run (c, γ)←W(SEND,msg1, ctx1,msg0, ctx0) and
s ← s ‖ c. Lastly, return (c, γ). On any input matching (RECV, c str): return (⊥,⊥, SA(s, c)), where A(x) = AR2 (x).
By construction, running B in the PRIV-S` experiment is equivalent to running G2(A,S). We conclude that

Advpriv-s
`

Λ/~R
(B) = 2 Pr

[
G2(A,S)

]
− 1 . (3.4)

Note that B’s runtime is O(tA + q2tS), since each of A’s RECV-queries is answered by running S. �

3.2 Case Study: TLS 1.3
Our study of partially specified channels owes much to a desire to analyze the TLS 1.3 record layer, in particular
without eliding its optional features and unspecified behavior. So, we begin this section with an overview of some
of its salient aspects, and a discussion of certain design choices that may have implications when the record layer is
viewed through the lens of our security notions. This is followed (in §3.2.2) by a decomposition of the record layer into
its component building blocks. Then we show how to securely compose these into a channel that faithfully captures
the unspecified behavior of the TLS standard.

Note about the draft. This analysis pertains to draft-23 of the TLS 1.3 standard [124], which was current at the
time of writing. Our analysis uncovers a potential attack vector in the draft: as a result, a change we suggested was
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adopted in the final version of the specification, RFC 8446 [123]. In the remainder, we distinguish draft-23 from the
RFC by referring to the former as the “draft standard” and the latter as the “final standard”.

3.2.1 Overview

TLS can be viewed as three protocols executing concurrently: the handshake protocol handles (re-)initialization of
the channel; the record protocol is used to exchange application data between the client and the server; and the alert
protocol is used to close the channel. The record layer refers to the mechanism used to protect flows between the
client and server in each sub-protocol. Each flow is authenticated and encrypted as soon as the client and server
have exchanged key material. (Usually the only unprotected messages are the initial “ClientHello” and “ServerHello”
handshake messages.) Intuitively, each of these flows constitutes a logical data stream, and the record layer is a means
of multiplexing these streams over a single communication channel. Among the record layer’s many design criteria
is the need to maximize flexibility for implementations. This means, somewhat paradoxically, that the specification
does not fully specify every aspect of the scheme. Rather, the record layer specification (cf. [124, §5]) defines some
core functionalities that must be implemented correctly and provides a set of guidelines and recommendations for
compliant, fully realized schemes.

Content types. Each stream has an associated content type. Available types are handshake, application data, alert,
and ChangeCipherSpec (CCS). Additional content types may be added, subject to certain guidelines (cf. [124, §11]).
If the client or server receives a message of unknown content type, it must send an unexpected_message alert to its
peer and terminate the connection. The CCS type is only available for compatibility with network infrastructure
accustomed to processing records for TLS 1.2 and below. Usually a CCS message is treated as an unexpected message,
but under specific conditions, it must be dropped.

Records. Plaintext records encode the content type, the stream fragment, the length of the fragment (which may
not exceed 214 bytes), and an additional field called legacy_record_version, whose value is fixed by the specification.
(It is only present for backwards compatibility.) All flows, including unprotected ones (the Hellos and CCS messages)
are formatted in this manner. The streams of data are transformed into a sequence of records. Stream fragments
may be coalesced into a single record, but the record boundaries are subject to the following rules (cf. [124, §5.1]):

– (Handshake, no interleaving.) If two records correspond to a single handshake message, then they must be
adjacent in the sequence of records.

– (Handshake, no spanning a key change.) If two records correspond to a single handshake message, then they
both must precede the next key change (defined below). If this condition is violated, then the second record
must be treated as an unexpected message.

– (Handshake and alert, no empty records.) Only application data records may have length 0.

– (One alert per record.) Alert messages must not be fragmented across records, and a record containing an alert
message must contain only that message.

Additional content types must stipulate appropriate rules for record boundaries. Records are protected using an
AEAD scheme (cf. [124, §5.2-5.4]). First, the record R is encoded as a string X = R.fragment ‖ str8(R.type) ‖ 08p for
some p ∈ N such that the length of the ciphertext is less than 214 + 256 bytes. (Note the optional padding.) Function
strm(·) denotes a bijection from Zm to {0, 1}m: for byte strings (i.e., when m ≡ 0 (mod 8)), this is the encoding of
the unsigned integer input in big-endian byte-order.

In the draft standard, the padded record X is encrypted with associated data ε (i.e., the empty string) and a
nonce N that we will define in a moment. The protected record has the following fields: integers opaque_type,
legacy_record_version, and length; and string encrypted_record . The first, opaque_type, has a fixed value of 23.
Similarly, legacy_record_version has a fixed value of 771 (or 0303 in hexadecimal). Field length indicates the length
of encrypted_record in bytes.

The nonce N is computed from a sequence number seqn and an initialization vector IV (cf. [124, §5.3]). Both K
and IV are derived from a shared secret (cf. [124, §7.1-§7.2]) using HKDF [92]. The length of IV is determined by
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the permitted nonce lengths of the AEAD scheme.2 The nonce N is computed as IV ⊕ (0|IV |−64 ‖ str64(seqn)), where
0 ≤ seqn ≤ 264 − 1. Note that the client and server each uses a different key and IV for sending messages to the
other. Thus, the record layer is executed as a unidirectional channel.

Usage Limits, Key Changes, and Protocol-Level Side-Effects. The spec mandates that the key be changed
prior to the sequence number reaching its limit of 264 − 1 in order to prevent nonce reuse. It also recommends that
implementations keep track of how many bytes of plaintext have been encrypted and decrypted with a single key and
to change the key before the “safety limit” of the underlying AEAD scheme has been reached.

As mentioned above, upon receipt of a message of unknown type, the receiver should send its peer an unex-

pected_message alert. The alert stream is generally used to notify the recipient that the peer is tearing down its
connection and will no longer write to the channel. There are closure alerts and error alerts [124, §6]. Both signal the
tear down of the channel state, but they provide different feedback. The unexpected_message alert is an example of the
latter. Error alerts are also used to indicate things like that the ciphertext is inauthentic or the record is malformed.
An example of a closure alert is close_notify, which indicates that the receiver should not expect any more data from
the peer, but that no error occurred.

The key and IV change during the normal course of the protocol. An update is always a side-effect of the handshake
protocol: during transmission of application data, an update is signaled by a particular handshake message described
in [124, §4.6.3], which informs the receiver that the sender has reinitialized its state and so must do so as well. The key
change re-initializes the state of the sender and receiver with a fresh key and IV (derived from the shared secret), and
the sequence number is set to 0 [124, §5.3]. Therefore, no sender or receiver state is held over after re-initialization
of the channel.

Observations About the Standard. The standard defines some core functionalities, but leaves many design
choices up to the implementer; our analysis aims to establish what security the record layer provides given this level
of flexibility. Our approach is shaped by two questions. First, which fully specified components can be altered without
impacting security? Second, which unspecified or partially specified behavior is security critical? We begin with a
couple of observations.

The first is that the record boundaries may leak the content type (i.e., the stream context). The content type of
each record is encrypted along with the fragment. The intent, presumably, is to hide both the content and its type,
but the record boundary rules stipulated by the standard make hiding the type unachievable in general. Consider the
one-alert-per-record rule, for example. The implementation is allowed to coalesce fragments of the same type, but a
record containing an alert must contain only that alert. Thus, the length of each record output by the sender may,
depending on the implementation, leak whether the record pertains to an alert or to application data. Of course,
the standard does permit implementations that hide the content type of each record, but this is quite different from
mandating this property. The takeaway is that encrypting the content type does not imply its secrecy, since the
record boundaries depend on it.

One aspect of the scheme that is precisely defined is the format of the ciphertext transmitted on the wire. Each
encrypted record begins with a header composed of opaque_type, legacy_record_version, and length. The values of
the first two fields are fixed by the spec, and the last field is crucial for correct operation, since it informs the receiver
of how many bytes to read next. What should the receiver do if the header is different than specified? Changing
the length field bits should result in the next ciphertext either being too short or too long, and so would be deemed
inauthentic with overwhelming probability. If opaque_type or legacy_record_version is mangled, then it should be
safe to proceed since this does not affect the inputs to decryption.

However, doing so would be deemed an attack in our ciphertext-integrity (INT-CS) setting: changing these
bits means the stream is out-of-sync, but since they are not authenticated (encryption uses ε for associated data),
the receiver would successfully decrypt. In fact, checking the opaque_type and legacy_record_version fields is left
optional by the spec: implementations MAY check these fields are correct and abort the connection if not (cf. [124,
§5.2]). This presents us with a dilemma: if we leave this choice up to the specification details, then there is a trivial
INT-CS attack. So, in order to salvage security, we need to lift this “MAY” to a “MUST”.

This dilemma points to something rather strange about the draft standard’s design: something that ought not
be security critical—in particular, the value of the delimiter bits—is deemed an attack. Indeed, this observation

2The scheme must specify limits for valid nonce lengths, per RFC 5116 [106]. The maximum must be at least 8 bytes.
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motivates our partially specified viewpoint. To formalize the idea that the value of the delimiter bits should not
impact security, we simply let the specification details “choose” these bits itself. This is safe as long as the bits are
authenticated and do not depend on sensitive values. (See §3.2.3 for details.)

An alternative conclusion is that this vulnerability is only an artifact of our adversarial model. Mangling the
delimiter bits should not affect the inputs to decryption, and so does not constitute a “real attack” on privacy or
integrity in an intuitive sense. To this point we offer a warning: this intuition is correct only if downstream handling
of the plaintext is independent of the contents of these fields. Since such behavior is beyond the scope of the TLS
standard (and even our security model), these legacy fields constitute an attack surface for implementations. The
risk is not inconsiderable, as it is hard to predict how systems will evolve to make use of TLS, and of these bits in
particular. Indeed, they owe their existence to backwards-compatibility requirements.

3.2.2 Building Blocks
In this section we formalize the core components of the record layer. Our aim is to sweep all but these essential
building blocks into the specification details. The first primitive, called a stream multiplexer, captures the non-
cryptographic functionality of the channel. It transforms the data streams into a sequence of pre-channel fragments
(i.e., records), such that for each stream context (i.e., content type), the output of the receiver is a prefix of the
input to the sender. TLS offers a great deal of flexibility with respect to the stream multiplexer’s functionality: the
flip side is that design choices here impact the security of the overall construction. (Recall the discussion on record
boundaries in the previous section.) The second primitive is a scheme for authenticated encryption with associated
data (AEAD).

Stream multiplexers. We define two security properties for stream multiplexers. Both are given below. (Explana-
tion to follow.)

Definition 13 (Stream multiplexers). A stream multiplexer is a halting object Mux that exports two operators:

– (MUX,msg , ctx str)-(X str, γ any): inputs a stream fragment/context msg , ctx and outputs a pre-channel
fragment X and status info γ.

– (DEMUX, X str)-(msg , ctx str, γ any): inputs a pre-channel fragment X and returns a stream fragment/context
msg , ctx and status info γ.

Refer to procedures Expmpriv-s`
b,Mux (A) and Expsim-mstat

b,Mux (A) defined in Figure 3.4 and associated to a stream multi-
plexer Mux , adversary A, simulator S, leakage parameter `, and bit b. Define the mPRIV-S` advantage of adversary A
in attacking Mux as

Advmpriv-s`
Mux (A) := Pr

[
Expmpriv-s`

1,Mux (A)
]
− Pr

[
Expmpriv-s`

0,Mux (A)
]
.

Define the SIM-mSTAT advantage of adversary A in attacking Mux relative to S as

Advsim-mstat
Mux (A,S) := Pr

[
Expsim-mstat

1,Mux (A,S)
]
− Pr

[
Expsim-mstat

0,Mux (A,S)
]
.

We say that Mux is mPRIV-S` (resp. SIM-mSTAT) secure if Advmpriv-s`
Mux (A) = 0 (resp. Advsim-mstat

Mux (A) = 0) for
all A, regardless of A’s runtime or query complexity. (Note that security is defined information-theoretically, rather
than computationally.) �

These security notions capture how design choices for this component of the channel impact the channel’s over-
all security. The first, mPRIV-S`, captures an adversary’s ability to discern information about the stream frag-
ment/context passed to Mux (MUX, ·, ·) given (information about) its outputs. Like the PRIV-S` experiment (§3.1.2),
the mPRIV-S` experiment has a leakage parameter `. The adversary is given access to an oracle Mux with the same
input pattern as the SEND-operator exported by the Priv-S(`) game (Figure 3.1), and its goal is to guess the value
of the challenge bit b. (Here the challenge bit is written as a parameter of the experiment.) Where the experiments
differ, however, is in the information available to the adversary. Rather than return the pre-channel fragment X
directly, the oracle returns only the length of X (cf. 3.4:11). This captures a much weaker property than usual:
rather than insisting that (X, γ) not leak anything about (msg , ctx ) beyond L = `(msg , ctx ), we insist only that
(|X|, γ) not leak anything beyond L.
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procedure Exppriv
b,AEAD(A)i:

1 X ,Q ← ∅; A(SETUP)
2 K ←← K; ret AEnc

1 (OUT)

procedure Enc(N,A,M):
3 if N ∈ X ∨ (N,A,M) 6∈ N × A×M then ret ⊥
4 X ← X ∪ {N}; c← AEAD(CLEN, |M |)
5 if b = 1 then ret AEADK(ENC, N,A,M)
6 else C ←← {0, 1}c; ret C

procedure Expmpriv-s`
b,Mux (A):

7 Mux (SETUP); A(SETUP)
8 ret AMux

1 (OUT)

procedure Mux(msg1, ctx1,msg0, ctx0)

9 if `(msg1, ctx1) 6= `(msg0, ctx0) then ret (⊥,⊥)
10 (X, γ)← Mux (MUX,msgb, ctx b)
11 ret (|X|, γ)

procedure Expint
AEAD(A):

12 X ,Q ← ∅; A(SETUP)

13 K ←← K; w ← 0; AEnc,Dec
1 (OUT); ret w

procedure Enc(N,A,M):
14 if N ∈ X ∨ (N,A,M) 6∈ N × A×M then ret ⊥
15 C ← AEADK(ENC, N,A,M)
16 X ← X ∪ {N}; Q ← Q∪ {(N,A,C)}; ret C

procedure Dec(N,A,C):
17 M ← AEADK(DEC, N,A,C)
18 w ← w ∨ [M 6= ⊥ ∧ (N,A,C) 6∈ Q]; ret M

procedure Expsim-mstat
b,Mux (A,S):

19 Mux (SETUP): A(SETUP); S(SETUP)
20 ret ADemux

1 (OUT)

procedure Demux(X):
21 if b = 1 then
22 ( , , γ)← Mux (DEMUX, X)
23 ret γ
24 else ret S(|X|)

Figure 3.4: Left: Experiments for defining PRIV (top) and INT (bottom) security of AEAD schemes. Sets K, N ,
A, and M denote the key, nonce, AD, and message space of AEAD respectively. Right: Experiments for defining
mPRIV-S` (top) and SIM-mSTAT (bottom) of stream multiplexers.

The second notion, SIM-mSTAT, captures simulatability of the status message output by Mux (DEMUX, ·) given
only the length of the pre-channel fragment. The adversary is given an oracle Demux that takes as input a pre-
channel fragment X. If b = 1, then the oracle returns the status info about by Mux (DEMUX, X); otherwise it executes
the simulator S on input of |X|.

Authenticated Encryption with Associated Data. We describe the syntax for AEAD schemes as prescribed
by the standard [106] and recall the standard notions of indistinguishability under chosen plaintext attack (simply
called PRIV) and ciphertext integrity (INT).

Definition 14 (AEAD schemes). An AEAD scheme is a halting, functional object AEAD that exports the following
operators:

– (K str, ENC, N,A,M str)-(C str): encrypts messageM under keyK with nonce N and associated data (AD) A
and returns the resulting ciphertext C.

– (K str,DEC, N,A,C str)-(M str): decrypts ciphertext C under key K with nonce N and AD A and returns
the plaintext M .

– (CLEN,m int)-(c int): returns the length c of the ciphertext corresponding to a plaintext of length m.

– (MLEN, c int)-(m int): returns the length m of the plaintext corresponding to a ciphertext of length c.

We respectively define the key, nonce, associated data, and message space as the sets K,N ,A,M ⊆ {0, 1}∗ for
which AEADK(ENC, N,A,M) 6= ⊥ if and only if (K,N,A,M) ∈ K × N × A × M. Correctness requires that
AEADK(DEC, N,A,AEADK(ENC, N,A,M)) = M for all such (K,N,A,M). (This condition implies that AEAD

is both correct and tidy in the sense of Namprempre et al. [108].) We require that |C| = AEAD(CLEN, |M |) and
|M | = AEAD(MLEN, |C|) for all such (K,N,A,M), where C = AEADK(ENC, N,A,M). For all M ∈ {0, 1}∗ we
require that, if M ∈M, then {0, 1}|M| ⊆M. Finally, we require the sets K, N , A, andM are computable.

Refer to procedures Exppriv
b,AEAD(A) and Expint

AEAD(A) defined in Figure 3.4 and associated to a scheme AEAD ,
adversary A, and bit b. Define the PRIV advantage of A as

AdvprivAEAD(A) := Pr
[
Exppriv

1,AEAD(A)
]
− Pr

[
Exppriv

0,AEAD(A)
]
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spec TLS-Recordn: //A points to A2

1 var AEAD ,Mux object
2 var seqn int, buf str, sync bool
3 op (SETUP): Mux (SETUP)
4 seqn ← 0; buf ← ε; sync ← 1
5 op (GEN):
6 (K, IV )←← K× {0, 1}n; ret (K, IV )
7

8 op (MUX, (K, IV str),msg , ctx str):
9 (X,α)← Mux (MUX,msg , ctx )

10 if X = ε then ret (ε, (ε, α))
11 N ← IV ⊕ (0n−64 ‖ str64(seqn))
12 seqn ← seqn + 1
13 ret (X, (N,α))
14

15 opA (WRITE, (K, IV str), X str, (N str, α any)):
16 var A str, γ any
17 (A, γ)← A(send ready, |X|, α)
18 if X = ε then ret (ε, γ)
19 Y ′ ← AEADK(ENC, N,A,X)
20 if Y ′ = ⊥ ∨A(parse, A ‖Y ′) 6=(|A|+ |Y ′|, |A|)
21 then ret (ε,A(invalid ptxt))
22 ret (A ‖Y ′, γ)

23 opA (READ, (K, IV str), C str):
24 var u int, drop bool, α any
25 buf ← buf ‖C
26 (u, )← A(parse, buf ); (drop, α)← A(drop, buf )
27 Y ← buf [:u]; buf ← buf % Y
28 if Y = ε ∨ drop = 1 then ret (ε, (ε, α))
29 N ← IV ⊕ (0n−64 ‖ str64(seqn))
30 seqn ← seqn + 1
31 ret (Y, (N,α))
32

33 opA (DEMUX, (K, IV str), Y str, (N str, α any)):
34 var X str, v int, γ any
35 X ← ε; γ ← A(recv ready, |Y |, α)
36 if (Y = ε ∧ γ 6= ⊥) ∨ sync = 0 then ret (⊥,⊥, γ)
37 else if Y 6= ε then
38 ( , v)← A(parse, Y ); A← Y [:v]; Y ′ ← Y % A
39 X ← AEADK(DEC, N,A, Y ′)
40 if X = ⊥ then
41 sync ← 0
42 ret (⊥,⊥,A(invalid ctxt))
43 (msg , ctx , γ)← Mux (DEMUX, X)
44 ret (msg , ctx , γ)

Figure 3.5: Spec TLS-Recordn, a partial specification of the TLS 1.3 record layer. It is defined in terms of a stream
multiplexer (Def. 13) and an AEAD scheme (Def. 14). Set K denotes the key space of AEAD ; it must be finite.
Integer n ≥ 64 is the IV length; it is chosen so that {0, 1}n ⊆ N , where N denotes the nonce space of AEAD .
Function strm(·) is a bijection from Zm to {0, 1}m.

and the INT advantage of A as
AdvintAEAD(A) := Pr

[
Expint

AEAD(A)
]
.

Informally, AEAD is PRIV (resp. INT) secure if the PRIV (resp. INT) advantage of every reasonably efficient
adversary is small. �

3.2.3 Security of the Record Layer

We are now ready to formalize the TLS 1.3 record layer as a partially specified channel. Let Mux be a stream
multiplexer and let AEAD be an AEAD scheme with a finite key space. Let n ≥ 64 be an integer for which {0, 1}n

is a subset of the nonce space of AEAD . Define channel Λ = TLS-Recordn(AEAD ,Mux ) as specified in Figure 3.5.
Before diving in, we first note that our formal specification of Λ differs from the draft standard in one small, but

security-critical way. Namely, draft-23 mandates that the AEAD scheme be invoked with the empty string as the
AD, whereas in our scheme, the string A (i.e., the record header) is used as AD. To fully comply with the spec, one
would replace A with ε on lines 3.5:19 and 39. This change would lead to a trivial INT-CS attack. Suppose the
sender outputs Y = A ‖Y ′. Then the adversary can deliver A∗ ‖Y ′ to the receiver for some A∗ 6= A where |A∗| = |A|.
If Y is consumed by the receiver, then the channel will be deemed out-of-sync by the INT-CS experiment, but not
by the channel. This is inevitable in the stream-based channel setting: if one were to directly extend FGMP’s syntax
and security notions and analyze the record layer, then one would still encounter the same problem. In light of this
limitation, this change was adopted in the final standard.

The Sender. The MUX-operator (3.5:8-13) invokes the stream multiplexer Mux in order to buffer the input stream
and determine the next record (i.e., pre-channel fragment) to output. The channel is designed to never operate on
0-length records (3.5:10): if the pre-channel fragment X input to the channel writer (i.e., the WRITE-operator) is ε,
then the channel writer outputs a 0-length channel fragment (3.5:18). Otherwise the record is protected and written
to the channel. The data on the wire is A ‖Y ′, where Y ′ is the encryption of X and A is a string chosen by the SD
(via a call to A; cf. 3.5:17). We refer to A as the record header, Y ′ as the record data, and A ‖Y ′ as the record.
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The Receiver. Defragmentation of records written to the channel is performed by the channel reader (i.e., the
READ-operator on lines 3.5:23-31). First, the channel fragment C is appended to an internal buffer buf str. Next,
the SD oracle (A) is invoked in order to decide how much of the buffer to dequeue next. This is accomplished by a
call of the form A(parse, buf ). The value returned by this call is interpreted as a pair of integers (u, v), the first being
the length of the record to consume next, and the second being the length of the record header. The channel reader
dequeues the first u bits of buf corresponding to a complete record Y . The SD is then called upon to decide whether
to drop Y without further processing (3.5:28). (This permits the rules for handling CCS messages.) If not, then
presumably the channel fragment Y is the concatenation of a record header A, where |A| = v, and the corresponding
record data Y ′. If Y 6= ε, then Y ′ is decrypted (using A as associated data) and the resulting pre-channel fragment X
(i.e., unprotected record) is input to the stream multiplexer Mux .

Once the DEMUX-operator (3.5:33-44) encounters an invalid ciphertext, it marks the channel as out-of-sync and
never outputs another a fragment. If the receiver is in-sync and the channel fragment Y is 0-length, then the operator
may poll Mux to see if a message fragment is available for outputting. (That is, Mux may be invoked on line 3.5:43
with X = ε.) Finally, usage limits are enforced by the SD, which may shutdown the channel by outputting an error
as shown on lines 3.5:18 and 36.

Security. Fix AEAD , Mux , n, and Λ = TLS-Recordn(AEAD ,Mux ) as specified above. Let ` be a leakage
parameter. The following theorem says that the PRIV-SR` security of Λ follows from the PRIV and INT security
of AEAD and the mPRIV-S` and SIM-mSTAT security of Mux .

Theorem 2. Let 0 ≤ qs, qr < 264 be integers. Let A = NoDeg(M,SD) be a tA-time, n.d., adversary that makes qs
SEND-queries and qr RECV-queries. Suppose SD exports a (parse, str)-(int, int)-operator for which SD(parse, Y ) =

SD(parse, buf ) for all strings Y � buf . Then for every tS-time simulator S there exist adversaries B, C, D, and E
such that

Advpriv-sr
`

Λ (A) ≤ Advmpriv-s`
Mux (B) + 2Advsim-mstat

Mux (C, S) +

8AdvintAEAD(D) + 2AdvprivAEAD(E) ,

where: B is O(qr(tS+tA))-time and makes at most qs Mux-queries; C is O(tA)-time and makes at most qr Demux-
queries; D is O(tA)-time and makes at most qs Enc-queries and qr Dec-queries; and E is O(qr(tS + tA))-time and
makes at most qs Enc-queries.

Let us briefly address the restrictions on A before we proceed with the proof. Recall that the parse-operator
exported by the adversary’s auxiliary interface takes as input a channel fragment and returns the length u of the
next complete record, and the length v of the corresponding record header. This information is used by the receiver
(lines 3.5:26 and 38) to process the record, and it used by the sender (line 3.5:20) to ensure that each record it
outputs can be correctly parsed by the receiver. This, coupled with the requirement that the adversary is non-
degenerate (i.e., A-queries are answered deterministically and statelessly; see Def. 4), ensures that record boundaries
are determined solely by the sequence of channel fragments delivered to the receiver. This ought to be true of any
correct implementation of the record layer; interestingly, it also turns out to be necessary in order to prove SIM-STAT
security of Λ, which we use to derive the bound (via Lemma 3).

Proof of Theorem 2. By Lemma 3, for every tS′ -time simulator S′ there exist n.d. adversaries B′, C′, and D′ such
that

Advpriv-sr
`

Λ (A) ≤ Advpriv-s
`

Λ (B′) + 2Advint-csΛ (D′) + 2Advsim-stat
Λ (C′, S′) , (3.5)

where B′ is O(tA + qrtS′)-time and makes qs SEND-queries, and C′ and D′ are both O(tA)-time and each makes qs
SEND-queries and qr RECV-queries. We proceed by bounding each term on the right hand side of Eq. (3.5). First, the
PRIV-S` security of Λ follows from the mPRIV-S` security of Mux and the PRIV security of AEAD .

Claim 2. There exist O(tA + qrtS′)-time adversaries B and E for which

Advpriv-s
`

Λ (B′) ≤ Advmpriv-s`
Mux (B) + 2AdvprivAEAD(E) ,

where B makes qs Mux-queries and E makes at most qs Enc-queries.
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procedure SimSend(msg1, ctx1,msg0, ctx0):
1 var Y ′, N,A str, x int, α, γ any
2 if init 6= 1 ∨ `(msg1, ctx1) 6= `(msg0, ctx0) then ret (⊥,⊥)
3 (x, α)←Mux(msg1, ctx1,msg0, ctx0)
4 if x = ε then N ← ε
5 else N ← IV ⊕ (0n−64 ‖ str64(seqn)); seqn ← seqn + 1
6 (A, γ)← A(send ready, x, α)
7 if x = 0 then ret (ε, γ)
8 if (N,A, 1x) 6∈ N × A×M then Y ′ ← ⊥
9 else c← AEAD(CLEN, x); Y ′ ←← {0, 1}c

10 if Y ′ = ⊥ ∨A(parse, A ‖Y ′) 6=(|A|+ |Y ′|, |A|) then
11 ret (ε,A(invalid ptxt))
12 ret (A ‖Y ′, γ)

Figure 3.6: Procedure SimSend for the proof of Claim 2.

Proof. Let N , A, andM denote the nonce, AD, and message space of AEAD respectively. Define procedure G0 so
that Advpriv-s

`

Λ (B′) = 2 Pr
[
G0(B′)

]
−1, i.e., G0 is defined to be the PRIV-S` experiment for Λ (see Def. 10). Define

procedure G1 from G0 by modifying the specification of Λ so that “Y ′ ← AEADK(ENC, N,A,X)” on line 3.5:19 is
replaced with the following code:

1 var Y ′ str
2 if (N,A,X) 6∈ N × A×M then Y ′ ← ⊥
3 else c← AEAD(CLEN, |X|); Y ′ ←← {0, 1}c

We exhibit a O(tB′)-time adversary E that makes at most qs Enc-queries and for which

Pr
[
G0(B′)

]
≤ Pr

[
G1(B′)

]
+ AdvprivAEAD(E) . (3.6)

Adversary E simply runs G0(B′) with line 3.5:19 replaced with “Y ′ ← Enc(N,A,X)”. Requiring that qs < 264

ensures that the nonce of each Enc-query is unique, and so we have that Pr
[
Expint

1,AEAD(E)
]

= Pr
[
G0(B′)

]
and

Pr
[
Expint

0,AEAD(E)
]

= Pr
[
G1(B′)

]
.

Now consider the mPRIV-S` adversaryB that runsG1(B′), except that it answers main-interface queries matching
(SEND,msg1, ctx1,msg0, ctx0 str) using the procedure in Figure 3.6 (cf. 3.1:22-26). This procedure begins as usual
by checking that the game is initiated and that the inputs (msg1, ctx1) and (msg0, ctx0) have the same leakage. The
adversary then invokes its own Mux-oracle on input of (msg1, ctx1,msg0, ctx0), getting the length of the resulting
pre-channel fragment in return. The rest of the procedure is just like G1, except that it operates on the length of
the pre-channel fragment rather than the fragment itself. This does not change the output of the SEND-operator,
however, since by the correctness of AEAD , X ∈M implies that 1|X| ∈M for all X.

When B′ makes a main-interface query matching (GUESS, d bool) (cf. 3.1:19), adversary B immediately halts and
outputs d as its guess of the challenge bit in its own experiment. By construction we have that

Pr
[
G1(B′)

]
= Pr

[
b←← {0, 1}; b′ ←← Expmpriv-s`

b,Mux (B) : b′ = b
]
. (3.7)

The claimed bound follows by conditioning on the outcome of b. Note that B is O(tB′)-time and makes at most qs
Mux-queries. �

Claim 3. There exists a O(tA)-time adversary D0 for which Advint-csΛ (D′) ≤ AdvintAEAD(D0) and D0 makes at most qs
Enc-queries and qr Dec-queries.

Proof. Let W = World(AEAD ,Mux ) be the world specified in Figure 3.7. It is functionally equivalent to the
world prescribed by the INT-CS experiment for Λ: in particular, the probability that RealwinW (D′) = 1 is exactly
the probability that Realwin

Ŵ
(D′) = 1, where Ŵ = Wo(Int-CS( ),Chan(Λ)). World W was obtained from the

specification of Int-CS by replacing X -queries with the code that is executed by the system in response to these
queries. The sender’s operations are implemented by procedure Send, defined in Figure 3.8, and the receiver’s
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spec World:
1 var AEAD ,Mux ,M1,M0 object
2 var w, bad , sync, ŝync bool, K, IV , s, ŝ, t̂ str
3 var T table, buf str, ct1, ct0 int
4

5 op (SETUP):
6 Mux (SETUP); M1 ←M0 ← Mux
7 w, init , bad ← 0; sync, ŝync ← 1; T ← [ ]
8 s, ŝ, t̂, buf ← ε; ct1, ct0 ← 0
9

10 op (1,WIN): ret w
11

12 op (1, INIT):
13 if init 6= 1 then init ← 1
14 (K, IV )←← K× {0, 1}n

15 op ,A (1, SEND,msg , ctx str):
16 if init 6= 1 then ret (⊥,⊥)
17 ( , c, γ)← Send(msg , ctx )
18 s← s ‖ c; ŝ← ŝ ‖ c
19 ret (c, γ)
20

21 op ,A (1, RECV, c str):
22 if init 6= 1 then ret (⊥,⊥,⊥)
23 (Y,msg , ctx , γ)← Send(c); t̂← t̂ ‖Y
24 if sync = 1 ∧ Y � s then
25 s← s % Y
26 else
27 sync ← 0
28 w ← w ∨ (msg 6= ⊥ ∧ ctx 6= ⊥)
29 ret (msg , ctx , γ)

Figure 3.7: Specification of world W = World(AEAD ,Mux ) for the proof of Claim 3. Procedures Send and Recv
are defined in Figure 3.8.

operations are implemented by procedure Recv, also defined in Figure 3.8. The sender and receiver share access to
the secret key K and IV IV , but each has its own copy of the stream multiplexer (M1 for the sender and M0 for the
receiver) and maintains its own sequence number (ct1 for the sender and ct0 for the receiver). The flag used by the
receiver to keep track of the channel’s state has been renamed to ŝync. Finally, the sender and receiver share access to
a table T used to track the plaintext record corresponding to each ciphertext record computed by the sender (see line
3.8:12). Before performing the AEAD decryption operation, the receiver consults this table to see if the ciphertext
was previously computed by the sender (3.8:26). Because each nonce computed by the sender or receiver is unique,
and assuming AEAD is correct, this does not change the outcome of the experiment.

Experiment 0. Let G0(D′) = RealwinW (D′). One can easily verify that

Pr
[
G0(D′)

]
= Advint-csΛ (D′) . (3.8)

Revision 0-1. Define procedure G1 from G0 by adding the code “X ← ⊥” immediately after the flag bad gets set
on line 3.8:29. We exhibit an INT-adversary D0 such that

Pr
[
G0(D′)

]
≤ Pr

[
G1(D′)

]
+ AdvintAEAD(D0) , (3.9)

where D0 is O(tA)-time and makes qs Enc-queries and qr Dec-queries. Adversary D0 simply runs G0(D′) with line
3.8:9 replaced with “Y ′ ← Enc(N,A,X)” and line 3.8:28 replaced with “X ← Dec(N,A, Y ′)”. Flag bad gets set if
a call of the form Dec(N,A, Y ′) returns a plaintext X 6= ⊥. Because D0 did not previously ask Enc(N,A,X), this
implies that D0 has won its game.

Revision 1-2. Now define procedure G2 from G1 by replacing the “T [ct0, A, Y
′] 6= ⊥” condition on line 3.8:26 with

“Y � s”. By way of showing that
Pr
[
G1(D′)

]
= Pr

[
G2(D′)

]
, (3.10)

we argue that these conditions are equivalent. Let ŝ denote the concatenation of channel fragments produced by the
sender so far (see line 3.7:18) and let t̂ denote the concatenation of channel fragments consumed by the receiver so far
(3.7:23). Note that s = ŝ % t̂ whenever the channel is in-sync, i.e., when sync = 1. Fix q ∈ [qr] and run the experiment
up to the point just before the q-th RECV-query returns. Suppose that ŝync = 1 and Y 6= ε hold. At this point the
receiver has consumed a sequence of non-empty channel fragments Y1, . . . , Yct0−1 for which t̂ = Y1 ‖ · · · ‖Yct0−1.
Because ŝync = 1 holds, for each i ∈ [ct0 − 1] there exist strings Ai, Y ′i such that Yi = Ai ‖Y ′i and T [i, Ai, Y

′
i ] 6= ⊥.

Suppose that T [ct0, A, Y
′] 6= ⊥. Since Y = A ‖Y ′, it holds that Y1 ‖ · · · ‖Yct0−1 ‖Y � ŝ. Thus, the channel is

necessarily in-sync (i.e., s = ŝ % t̂), and so Y � s. Now suppose that Y � s holds. This implies that the channel
is in-sync (i.e., s = ŝ % t̂). In particular, there exist strings A, Y ′ such that Y = A ‖Y ′ and T [ct0, A, Y

′] 6= ⊥.
Moreover, by the construction of D′ (see the proof of Lemma 3) it holds that D′2(parse, Y ) = (|Y |, |A|). Because the
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procedure Send(msg , ctx ):
1 var N,A str, γ any
2 (X,α)←M1(MUX,msg , ctx )
3 if X = ε then N ← ε
4 else
5 N ← IV ⊕ (0n−64 ‖ str64(ct1))
6 ct1 ← ct1 + 1
7 (A, γ)← A(send ready, |X|, α)
8 if X = ε then ret (X, ε, γ)
9 Y ′ ← AEADK(ENC, N,A,X)

10 if Y ′ = ⊥ ∨A(parse, A ‖Y ′) 6=(|A|+ |Y ′|, |A|) then
11 ret (X, ε,A(invalid ptxt))
12 T [ct1, A, Y

′]← X
13 ret (X,A ‖Y ′, γ)

procedure Recv(c):
14 var N,X str, u, v int, drop bool, α, γ any
15 buf ← buf ‖ c
16 (u, v)← A(parse, buf ); (drop, α)← A(drop, buf )
17 Y ← buf [:u]; buf ← buf % Y
18 if Y = ε ∨ drop = 1 then N ← ε
19 else
20 N ← IV ⊕ (0n−64 ‖ str64(ct0))
21 ct0 ← ct0 + 1
22 X ← ε; γ ← A(recv ready, |Y |, α)
23 if (Y = ε ∧ γ 6= ⊥) ∨ ŝync = 0 then ret (Y,⊥,⊥, γ)
24 else if Y 6= ε then
25 A← Y [:v]; Y ′ ← Y % A
26 if T [ct0, A, Y

′] 6= ⊥ then X ← T [ct0, A, Y
′]

27 else
28 X ← AEADK(DEC, N,A, Y ′)
29 bad ← 1
30 if X = ⊥ then
31 ŝync ← 0
32 ret (Y,⊥,⊥,A(invalid ctxt))
33 (msg , ctx , γ)←M0(DEMUX, X)
34 ret (Y,msg , ctx , γ)

Figure 3.8: Procedures Send and Recv for the proofs of Claim 3 and Claim 4.

receiver computes the record boundaries just as the sender does, it must be that T [ct0, A, Y
′] 6= ⊥ holds on line

3.8:26.

Experiment 2. Observe that procedure G1 sets ŝync ← 0 (line 3.8:31) if it processes a channel fragment Y for
which Y 6� s. Thus, any query that sets sync ← 0 also sets ŝync ← 0. It follows that

Pr
[
G2(D′)

]
= 0 . (3.11)

This completes the proof of Claim 3. �

A similar argument allows us to relate the SIM-STAT security of Λ to the SIM-mSTAT security of Mux .

Claim 4. For every tS-time simulator S there exist O(tA)-time adversaries C and D1 and O(tS+tA)-time simulator S′

for which
Advsim-stat

Λ (C′, S′) ≤ Advsim-mstat
Mux (C, S) + AdvintAEAD(D1) ,

where C makes at most qr Demux-queries and D1 at most qs Enc-queries and at most qr Dec-queries.

Proof. Let S′ = Sim′(S,AEAD) as specified in Figure 3.10. Let world W = World(S,AEAD ,Mux ) and world
W ′ = World′(S′, S,AEAD ,Mux ) be as specified in Figure 3.9. WorldsW andW ′ were obtained from the SIM-STAT
experiment for Λ by conditioning on the outcome of the challenge bit b (cf. Figure 3.2). World W corresponds to the
case where RECV-queries are answered by the receiver (i.e., b = 1), andW ′ corresponds to the case where RECV-queries
are answered by simulator S′ (i.e, b = 0). There exists a O(tA)-time adversary C′′ for which

Advsim-stat
Λ (C′, S′) = Pr

[
RealwinW (C′′)

]
− Pr

[
RealwinW ′(C

′′)
]

(3.12)

and C′′ has the same query complexity as C′. Adversary C′′ simply runs C′, answering its oracle queries using its own
oracles in the natural way. When C′′ asks (GUESS, d bool) of its main interface, adversary C′ halts and outputs d.
In doing so, adversary C′′ makes as many SEND- and RECV-queries as C′. Moreover, its runtime is O(tA) because C′

is O(tA)-time.

Experiments 0 and 3. Define G0(C′′) = Real outW (C′′) and G3(C′′, S′) = Real outW ′(C
′′) so that

Advsim-stat
Λ (C′, S′) = Pr

[
G0(C′′)

]
− Pr

[
G3(C′′, S′)

]
. (3.13)
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spec World World′ :

1 var S′, S,AEAD ,Mux ,M1,M0 object
2 var bad , sync, ŝync, bool, K, IV , s, ŝ, t̂ str
3 var T table, buf str, ct1, ct0 int
4

5 op (SETUP):
6 S(SETUP); Mux (SETUP)
7 M1 ←M0 ← Mux
8 init , bad ← 0; sync, ŝync ← 1; T ← [ ]
9 s, ŝ, t̂, buf ← ε; ct1, ct0 ← 0

10

11 op (1, INIT):
12 if init 6= 1 then init ← 1
13 (K, IV )←← K× {0, 1}n

14 op ,A (1, SEND,msg , ctx str):
15 if init 6= 1 then ret (⊥,⊥)
16 ( , c, γ)← Send(msg , ctx )
17 s← s ‖ c; ŝ← ŝ ‖ c
18 ret (c, γ)
19

20 op ,A (1, RECV, c str):
21 var γ any
22 if init 6= 1 then ret (⊥,⊥)

23 (Y, , , γ)← Recv(c); t̂← t̂ ‖Y
24 if sync = 1 ∧ Y � s then s← s % Y
25 else sync ← 0

26 γ ← S′A(ŝ, c)

27 ret γ

Figure 3.9: Worlds W = World(S,AEAD ,Mux ) and W ′ = World′(S′, S,AEAD ,Mux ) for the proof of Claim 4.
Procedures Send and Recv are defined in Figure 3.8.
.

In other words, procedure G0 (resp. G3) runs adversary C′′ in world W (resp. W ′) and returns its output. We
proceed by rewriting procedure G0 so that it is functionally equivalent to G3.

Revision 0-1. First, define G1 from G0 by modifying the definition of procedure Recv as shown in the left panel
of Figure 3.10. This code was obtained by modifying procedure Recv as described in revisions 0-1 and 1-2 in the
proof of Claim 3. Namely, referring to Figure 3.8: the statement “X ← ⊥” was added immediately after bad is set on
line 3.8:29; and the expression “T [ct0, A, Y

′] 6= ⊥” on line 3.8:26 was replaced with “Y � s”. By the same argument
that yielded Eq. (3.9) and Eq. (3.10), there exists an INT-adversary D1 for which

Pr
[
G0(C′′)

]
≤ Pr

[
G1(C′′)

]
+ AdvintAEAD(D1) , (3.14)

where D1 is O(tA)-time and makes qs Enc-queries and qr Dec-queries.

Revision 1-2. Define G2 from G1 by modifying Recv as shown in Figure 3.10. The substantive change is to replace
execution of the stream multiplexer (3.10:21-22) with execution of the SIM-mSTAT-simulator S (3.10:23). Because S
operates on the length of the pre-channel fragment X rather than X itself, the procedure has been modified so that X
is not explicitly computed. We exhibit a SIM-mSTAT-adversary C for which

Advsim-mstat
Mux (C, S) = Pr

[
G1(C′′)

]
− Pr

[
G2(C′′)

]
. (3.15)

Adversary C runsG1(C′′), replacing “(msg , ctx , γ)← Mux (DEMUX, X); ret (Y,msg , ctx , γ)” with “ret (Y,⊥,⊥,Demux(X))”.
When C′′ halts, adversary C halts and outputs whatever C′′ output. Note that C has the same runtime as C′′ and
makes at most qr Demux-queries.

Experiment 2. Observe that the computation of procedure Recv in experiment G2 depends only on the channel
fragment c and the string s that records the ciphertext stream output by the sender that has not yet been consumed
by the receiver (cf. lines 3.9:24-25). The latter can be computed from the sender-produced stream ŝ and the receiver-
consumed t̂, both of which are available to the simulator S′ in experiment G3. Indeed, the specification of S′ (right
panel of Figure 3.10) was obtained by simplifying the code for Recv in G2. It is not difficult to verify that the
behavior of the RECV-operator in G2 and G3 are equivalent. We conclude that

Pr
[
G2(C′′)

]
= Pr

[
G3(C′′, S′)

]
. (3.16)

Finally, we comment on the runtime of simulator S′. Each of its operators runs S at most once; otherwise, its
computations are linear in the length of its inputs. By construction (see Lemma 3), these are bounded by the
runtime of A because its runtime includes the time needed to evaluate its oracle queries. It follows that the runtime
of simulator S′ is O(tS + tA). This completes the proof of Claim 4. �
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procedure Recv(c): G1 G2

1 var N, X str, u, v, x int, drop bool, α, γ any
2 buf ← buf ‖ c
3 (u, v)← A(parse, buf ); (drop, α)← A(drop, buf )
4 Y ← buf [:u]; buf ← buf % Y
5 if Y = ε ∨ drop = 1 then N ← ε
6 else
7 N ← IV ⊕ (0n−64 ‖ str64(ct0))
8 ct0 ← ct0 + 1
9 X ← ε x← 0 ; γ ← A(recv ready, |Y |, α)

10 if (Y = ε ∧ γ 6= ⊥) ∨ ŝync = 0 then ret (Y,⊥,⊥, γ)
11 else if Y 6= ε then
12 A← Y [:v]; Y ′ ← Y % A
13 if Y � s then
14 X ← T [ct0, A, Y

′] x← AEAD(MLEN, |Y ′|)
15 else
16 X ← AEADK(DEC, N,A, Y ′)
17 bad ← 1; X ← ⊥
18 if X = ⊥ then
19 ŝync ← 0
20 ret (Y,⊥,⊥,A(invalid ctxt))

21 (msg , ctx , γ)←M0(DEMUX, X)
22 ret (Y,msg , ctx , γ)

23 ret (Y,⊥,⊥, S(x))

spec Sim′:
24 var S,AEAD object, buf , ŝ, t̂ str, ŝync bool
25 op (SETUP):
26 S(SETUP); buf , ŝ, t̂← ε; ŝync ← 1
27 opA (ŝ, c str):
28 s← ŝ % t̂
29 (Y, γ)← Recv(s, c)
30 t̂← t̂ ‖Y
31 ret γ

procedure Recv(s, c):
32 var u, v, x int, α, γ any
33 buf ← buf ‖ c
34 (u, v)← A(parse, buf ); ( , α)← A(drop, buf )
35 Y ← buf [:u]; buf ← buf % Y
36 x← 0; γ ← A(recv ready, |Y |, α)
37 if (Y = ε ∧ γ 6= ⊥) ∨ ŝync = 0 then ret (Y, γ)
38 else if Y 6= ε then
39 if Y � s then x← AEAD(MLEN, u− v)
40 else ŝync ← 0; ret (Y,A(invalid ctxt))
41 ret (Y, S(x))

Figure 3.10: Definitions for the proof of Claim 4. Left: Definition of procedure Recv called by G0 and G1. Right:
Specification of simulator S′ = Sim′(S,AEAD).

To complete the proof, we consolidate the two INT-CS terms into one. Namely, define INT-adversary D by
flipping a coin b←← {0, 1} and running Db, where D1 is given by Claim 3 and D0 is given by Claim 4. Then for each
b ∈ {0, 1} it holds that

AdvintAEAD(Db) ≤ 2AdvintAEAD(D) . (3.17)

This completes the proof. �

Remark 4. The restrictions on the adversary in Theorem 2 were not made in the original version of PS18. Some
restrictions are necessary, however, as we are unable to prove SIM-STAT security of the channel for arbitrary adver-
saries. Indeed, this indicates that an error was made in the original proof. (The full version of the paper has been
revised in order to correct the error; see [116, Theorem 4].) We remark that Rogaway and Stegers make a similar
restriction in their proof of security of the NSL2 protocol (cf. [130, Theorem 1]). These restrictions are somewhat
technical in nature, in the sense that they are necessary to prove security but do not impede a rigorous analysis of
TLS 1.3. �

3.3 Discussion

The formal model presented in this chapter (§3.1) advances the theory of secure channels by considering the multi-
plexing of many data streams over a single channel, an essential feature of modern protocols like TLS. By viewing data
as a stream, our syntax and execution environment for channels accurately reflects how their APIs process inputs.
This leads to a strong attack model in which many of the details left unspecified by the TLS standard are crucial for
security. We prove that the TLS 1.3 record layer meets our privacy goal, but with two caveats. First, whether the
record layer hides the length, content, or type of input streams depends crucially on details left unspecified by the
standard. Second, the optional behavior of the draft standard does not allow us to prove integrity of the ciphertext
stream. However, we suggest a simple change to the standard so that it provably does. (This change was adopted in
the final standard [123].)
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Our formal specification (Figure 3.5) provides a degree of robustness to changes to the standard that might affect
the record layer. For example, the record boundaries are an especially flexible aspect of the specification, since
future TLS extensions might add new content types. Our treatment handles, quite seamlessly, the impact on record
boundaries that such extensions would induce. Still, there are features of the standard that our analysis does not
(directly) account for.

– Our formal treatment does not address negotiation of the AEAD scheme during the handshake protocol.
Consequentially, any agility [5] issues that arise as a result are not accounted for. It should be noted that
TLS 1.3 takes steps to ensure that keys used by different ciphersuites (i.e., AEAD schemes) are independent:
in particular, key derivation is bound to the selected ciphersuite. (We provide more details on the key schedule
in §4.2.) However, our specification of the record layer does not capture key derivation and instead assumes
ideal distribution of the key (and IV) used to protect the channel. (See the GEN-operator on lines 3.5:5-6.)

– Nor does our specification account for key changes, which, as we mentioned before, occur throughout the normal
course of the protocol. This means that the proved security properties only apply to a single “phase” of the
protocol (i.e., early data, handshake data, or application data). This leaves open the question of whether the
concatenation of streams sent across key changes are secure.

– Translating the specification of the record layer in order to account for these things would bring to the fore a
variety of protocol-level side-effects that do not come up in the analysis of Theorem 2. For example, explicitly
modeling key derivation would also require us to account for other uses of the initial key material (e.g., for
exporting of pre-shared keys).

Accounting for these discrepancies would require revising the specification of the record layer (Figure 3.5), and so too
the proof of Theorem 2. The translation framework of Chapter 2 affords a potential shortcut in which one extends
Theorem 2 to the revised specification by reasoning directly about the translation itself. The remainder of this
dissertation exhibits two applications of this approach: one to the translation of a scheme’s specification (Chapter 4);
and another to the translation of its execution environment (Chapter 5).
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Chapter 4

Protocol Translation

The effort to standardize TLS 1.3 [123] was remarkable in that it leveraged provable security as part of the standard-
ization process [113]. Perhaps the most influential of these works was Krawczyk and Wee’s OPTLS protocol [93],
which served as the basis for an early draft of the TLS 1.3 handshake. Core features of OPTLS are recognizable in
the final standard, but TLS 1.3 is decidedly not OPTLS. As is typical of the standardization process, protocol details
were modified in order to address deployment and operational desiderata (cf. [113, §4.1]). Naturally, this raises the
question of what, if any, of the proven security that supported the original AKE protocol is inherited by the standard.

The objective of this chapter is to answer a general version of this question: given a reference protocol Π̃ (e.g.,
OPTLS), what is the cost, in terms of concrete security [21], of translating Π̃ into some real protocol Π (e.g., TLS 1.3)
with respect to the security notion(s) targeted by Π̃? This question is moot for OPTLS/TLS 1.3, of course, since the
standard has undergone continual analysis in the time since Krawczyk and Wee’s initial proposal. Still, cryptographic
standards continue to exhibit behavior that deviates from the “cleanroom” analysis of the protocols from which they
are derived.

A more recent standardization effort provides an illustrative case study. At the time of writing, the CFRG1 was
in the midst of selecting a portfolio of password-authenticated key-exchange (PAKE) protocols [27] to recommend to
the IETF2 for standardization. (The objective of a PAKE protocol is to securely establish a key between two parties
who initially only share a low-entropy secret, such as a password. We discuss the intended security model for this
class of protocols below.) Among the CFRG’s selection criteria [139] is the suitability of the PAKE for integration
into existing protocols. In the case of TLS, the goal would be to standardize an extension [123, §4.2] that specifies the
usage of the PAKE in the TLS handshake. This would enable defense-in-depth for applications in which passwords
are available for authentication, and sole reliance on the web PKI3 for authentication is undesirable (or impossible).
Thus, the extension (Π) should provide at least the same level of security as the PAKE itself (Π̃), with perhaps a
modest loss in concrete security.

Indifferentiable Execution of eCK-Protocols. We define security for PAKE in the extended Canetti-Krawczyk
(eCK) model of LaMacchia et al. [99], a simple, yet powerful model for the study of authenticated key exchange.
The eCK model specifies both the execution environment of the protocol (i.e., how the adversary interacts with it)
and its intended goal (i.e., key indistinguishability [30]) in a single security experiment. Our treatment breaks this
abstraction boundary.

Recall from Chapter 2 that for any transcript predicate ψ, game G, and systems X and X̃, we can argue that X
is Gψ-secure (Def. 8) by proving that X is ψ-indifferentiable from X̃ (Def. 3) and assuming X̃ itself is Gψ-secure. In
this chapter, the system specifies the execution environment of a cryptographic protocol for which the game defines
security. In §4.1 we specify a system eCK(Π) that formalizes the execution of protocol Π in the eCK model. Going
up a level of abstraction, running an adversary A in world W = Wo(G, eCK(Π)) in the MAINψ experiment (Def. 1)
lets A execute Π via W ’s auxiliary interface and “play” the game G via W ’s main interface. The environment eCK

1Cryptography Forum Research Group.
2Internet Engineering Task Force.
3Public-Key Infrastructure.
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surfaces information about the state of the execution environment, which G uses to determine if A wins. Finally,
transcript predicate ψ is used to determine if the attack is valid based on the sequence of W1- and W2-queries made
by A.

We specify a game G = Key-Ind(f, k) that formalizes the security goal of the eCK model. This is the standard
notion of key indistinguishability [30] for a particular notion of session “freshness”, as formalized by the parameter f .
In fact, a wide variety of key-indistinguishability notions in the literature can be captured this way [30, 27, 57, 71],
as well as other security goals [74, 41, 3]. This is made possible by “splitting up” the execution environment and
security goal, as we have done.

Case Study. In §4.2 we propose and prove secure a PAKE extension for TLS, which integrates the SPAKE2
protocol [4] into the handshake. Its design is based on existing Internet-Drafts [16, 98] and discussions on the CFRG
mailing list [44, 144]. Our analysis unearths some interesting and subtle design issues. First, existing proposals
effectively replace the DH key-exchange with execution of the PAKE, feeding the PAKE’s output into the key schedule
instead of the DH shared secret. As we will discuss, whether this usage is “safe” depends on the particular PAKE
and its security properties. Second, our extension adopts a “fail closed” posture, meaning if negotiation of the PAKE
fails, then the client and server tear down the session. Existing proposals allow them to “fail open” by falling back to
standard certificate-only authentication. We do not see a way to account for this behavior in the proof of Theorem 3,
at least not without relying on certificates. But this in itself is interesting, as it reflects the practical motivation of
the extension: it makes little sense to fail open if one’s goal is to reduce reliance on the web PKI.

Related work. The SPAKE2 protocol was first proposed and analyzed in 2005 by Abdalla and Pointcheval [4],
who sought a simpler alternative to the seminal encrypted key-exchange (EKE) protocol of Bellovin and Merritt [35].
Given the CFRG’s recent interest in SPAKE2 (and its relative SPAKE2+ [59]), there has been a respectable amount
of recent security analysis. This includes concurrent works by Abdalla and Barbosa [1] and Becerra et al. [20] that
consider the forward secrecy of (variants of) SPAKE2, a property that Abdalla and Pointcheval did not address.
Victor Shoup [137] provides an analysis of a variant of SPAKE2 in the UC framework [53], which has emerged as
the de facto setting for studying PAKE protocols (cf. OPAQUE [86] and (Au)CPace [81]). Shoup observes that the
usual notion of UC-secure PAKE [56] cannot be proven for SPAKE2, since the protocol on its own does not provide
key confirmation. Indeed, many variants of SPAKE2 that appear in the literature add key confirmation in order to
prove it secure in a stronger adversarial model (cf. [20, §3]).

A recent work by Skrobot and Lancrenon [138] characterizes the general conditions under which it is secure to
compose a PAKE protocol with an arbitrary symmetric key protocol (SKP). While their object of study is similar to
ours—a PAKE extension for TLS might be viewed as a combination of a PAKE and the TLS record layer protocol—
our security goals are different, since in their adversarial model the adversary’s goal is to break the security of the
SKP.

4.1 eCK-Protocols
We begin this section by formalizing the syntax and execution environment for eCK-protocols (§4.1.1). We then
recall the standard notion of key indistinguishability and formalize it in our framework (§4.1.2). Finally, we end this
section by discussing the relationship between our framework and the formal treatment of downgrade resilience of
Bhargavan et al. [41] (§4.1.3).

4.1.1 Syntax And Execution Environment
The eCK model was introduced by LaMacchia et al. [99] in order to broaden the corruptive powers of the adversary
in the Canetti-Krawczyk setting [57]. The pertinent change is to restrict the class of protocols to those whose state
is deterministically computed from the player’s static key (i.e., its long-term secret),4 ephemeral key (i.e., the per-
session randomness),5 and the sequence of messages received so far. This results in a far simpler formulation of

4LaMacchia et al. use the term “long-term” key; Bellare et al. use the term “long-lived key” [30, 27]. We use the term “static
key”, following the Noise protocol framework [120], so that the “s” in “sk ” may stand for “static”.

5This is similar to the classical Bellare-Rogaway (BR) setting [30]. However, in BR the randomness consumed by a session
may be unbounded, whereas in eCK, the randomness is sampled from a finite set.
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spec eCK: //A points to A2; R to resources

1 var Π object, r int
2 var pk , sk , ek , α, π table; atk any
3 op (SETUP):
4 Π(SETUP); r ← Π(MOVES)
5 pk , sk , ek , α, π ← [ ]; atk ← ( )
6

7 //Main interface
8 opA,R (1, INIT):
9 (pk , sk)← ΠA,R(SGEN); ret pk

10 opA,R (1,GAME ST, x, s, i str):
11 ret ΠA,R(GAME ST, x, i, πis)
12 op (1,ATTACK ST): ret atk
13

14 //Auxiliary interface
15 op (2, PK, i str): ret pk i
16 op (2, SK, i str):
17 atk←atk . (SK, i); ret sk i
18 op (2, EK, s, i str):
19 atk←atk . (EK, s, i); ret ek is

20 opA,R (2, INIT, s, i str, a any):
21 Init(active, s, i, a)
22 opA,R (2, SEND, s, i str, in any):
23 ret Send(s, i, in)
24 opA,R (2, EXEC, s1, i1, s0, i0 str, a1, a0 any):
25 Init(passive, s1, i1, a1)
26 Init(passive, s0, i0, a0)
27 out ← ⊥; tr ← ( )
28 for j ← 1 to r + 1 do γ ← j (mod 2)
29 out ← Send(sγ , iγ , out)
30 tr ← tr . out
31 ret tr

procedure Init(t, s, i, a): // t ∈ {active, passive}

32 ek is ← ΠA,R(EGEN, i, a)
33 αis ← a; πis ← ⊥
34 atk←atk . (t, s, i)

procedure Send(s, i, in):
35 (πis, out)← ΠA,R(SEND, i, sk i, ek is, α

i
s, π

i
s,m)

36 ret out

Figure 4.1: Execution environment for two-party eCK-protocols.

session-state compromise. We embellish the syntax by providing the party with an initial input at the start of each
session, allowing us to capture features like per-session configuration [41].

Definition 15 (Protocols). An (eCK-)protocol is a halting, stateless object Π, with an associated finite set of
identities I ⊆ {0, 1}∗, that exports the following operators:

– (SGEN)-(pk , sk table): generates the static key and corresponding public key of each party so that (pk i, sk i) is
the public/static key pair of party i ∈ I.

– (EGEN, i str, αany)-(ek any): generates an ephemeral key ek for party i with input α. The ephemeral key
constitutes the randomness used by the party in a given session.

– (SEND, i str, sk , ek , α, π, in any)-(π′, out any): computes the outbound message out and updated state π′ of
party i with static key sk , ephemeral key ek , input α, session state π, and inbound message in. This operator
is deterministic.

– (MOVES)-(r int): indicates the maximum number of moves (i.e., messages sent) in an honest run of the protocol.
This operator is deterministic. �

The execution environment for eCK-protocols is specified by eCK in Figure 4.1. The environment stores the
public/static keys of each party (tables pk and sk) and the ephemeral key (ek), input (α), and current state (π) of
each session. As usual, the adversary is responsible for initializing and sending messages to sessions, which it does
by making queries to the auxiliary interface (4.1:14-31). Each session is identified by a pair of strings (s, i), where s
is the session index and i is the identity of the party incident to the session. The auxiliary interface exports the
following operators:

– (INIT, s, i str, a any): initializes session (s, i) on input a by setting αis ← a and πis ← ⊥. A session initialized
in this way is said to be under active attack because the adversary controls its execution.

– (SEND, s, i str, in any)-(out any): sends message in to a session (s, i) under active attack. Updates the session
state πis and returns the outbound message out .

– (EXEC, s1, i1, s0, i0 str, a1, a0 any)-(tr any): executes an honest run of the protocol for initiator session (s1, i1)

on input a1 and responder session (s0, i0) on input a0 and returns the sequence of exchanged messages tr .
A session initialized this way is said to be under passive attack because the adversary does not control the
protocol’s execution.
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– (PK, i str)-(pk any), (SK, i str)-(sk any), and (EK, s, i str)-(ek any): returns, respectively, the public key of
party i, the static key of party i, and the ephemeral key of session (s, i).

Whenever the protocol is executed, it is given access to the adversary’s auxiliary interface (see interface oracle A
on lines 4.1:9, 11, 32, and 35). This allows us to formalize security goals for protocols that are only partially
specified [130]. In world Wo(G,X), system X = eCK(Π) relays Π’s A-queries to G: usually game G will simply
forward these queries to the adversary, but the game must explicitly define this. (See §4.1.2 for an example.)

The attack state (atk) records the sequence of actions carried out by the adversary. Specifically, it records whether
each session is under active or passive attack (4.1:34), whether the adversary knows the ephemeral key of a given
session (4.1:19), and which static keys are known to the adversary (4.1:17). These are used by the game to decide
if the adversary’s attack was successful. In addition, the game is given access to the game state, which surfaces any
artifacts computed by a session that are specific to the intended security goal: examples include the session key in a
key-exchange protocol, the session identifier (SID) or partner identifier (PID) [27], or the negotiated mode [41]. The
game state is exposed by the protocol’s GAME␣ST-interface (e.g., lines 4.3:8-13). All told, the main interface (4.1:7-12)
exports the following operators:

– (INIT)-(pk any): initializes each party by running the static key generator and returns the table of public
keys pk .

– (ATTACK ST)-(atk any): returns the attack state atk to the caller.

– (GAME ST, x, s, i str)-(val any): provides access to the game state.

Attack Validity. For simplicity, our execution environment allows some behaviors that are normally excluded in
security definitions. Namely, (1) the adversary might initialize a session before the static keys have been generated,
or try to generate the static keys more than once; or (2) the adversary might attempt to re-initialize a session already
in progress. The first of these is excluded by transcript predicate φinit and the second by φsess, both defined below.

Definition 16 (Predicates φinit and φsess). Let φinit(tx ) = 1 if |tx | ≥ 1, tx1 = (1, INIT), and for all 1 < α ≤ |tx |
it holds that txα 6= (1, INIT). Let φsess(tx ) = 0 iff there exist 1 ≤ α < β ≤ |atk | such that atkα = (tα, sα, iα),
atkβ = (tβ , sβ , iβ), (sα, iα) = (sβ , iβ), and tα, tβ ∈ {passive, active}, where atk is the attack state corresponding to
transcript tx . �

Comparison to LaMacchia et al. Apart from the possibility of the protocol being only partially specified, there
are a few minor differences between the execution environment described above and that of LaMacchia et al. These
are inherited from recent iterations of the eCK model, in particular eCKw/FPS of Cremers-Feltz [62] and FPS-PSK of
Dowling-Paterson [71]. First, our experiment involves an explicit session index s used to distinguish between sessions
(s, i) pertaining to the same party i. Our protocols do not operate on s, but solely on the conversation associated
with the session (i.e., the session’s state and the inbound message). Second, we do not allow the adversary to specify
the parties’ identities (that is, the set I) or the public key of corrupted parties.6 Third, our environment includes an
explicit session-initialization operation, allowing us to model per-session configuration [41].

4.1.2 KEY-IND Security
In order to demonstrate how security properties for eCK-protocols are defined in our framework, in this section we
specify a game that captures the standard notion of key indistinguishability. The game is defined so that freshness
of the test session is a parameter, allowing us to capture in one experiment a large variety of corruption models and
partnering notions [30, 27, 57], including the notion of LaMacchia et al.

A freshness predicate is a halting, functional object that exports a ( set, ( , str))-bool-operator. Let f be a
freshness predicate and let k ≥ 0 be an integer. Let Π be a protocol (Def. 15) and let X = eCK(Π) be as specified in
Figure 4.1. Let G = Key-Ind(f, k) be as specified in Figure 4.2. The objective of the adversary in world Wo(G,X)

(illustrated in Figure 4.2) is to distinguish some session key computed by system X from a random, k-bit string.

6In theory, allowing the adversary to specify these things results in a stronger attack model, but we are unaware of an
instance of this capability leading to an attack in practice.
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spec Key-Ind: //X points to X1; A points to A2.

1 var f object, k int
2 var b, w, init , guess, test bool, s∗, i∗ any, S set
3 op (SETUP): b←← {0, 1}; w, init , guess, test ← 0; S ← ( )
4 op (1,WIN): ret w
5 opX , (1, INIT): if init 6= 1 then init ← 1; ret X (INIT)
6 opX , (1, REVEAL, s, i str): S←S ∪ {(s, i)}; ret X (GAME ST, key, s, i)
7 opX , (1,TEST, s, i str):
8 K1 ← X (GAME ST, key, s, i); K0 ←← {0, 1}k
9 if test 6= 1 ∧K1 6= ⊥ then test ← 1; (s∗, i∗)← (s, i); ret Kb

10 opX , (1,GUESS, d bool):
11 if guess 6= 1 then guess ← 1
12 w ← (b = d) ∧ fX (S, (s∗, i∗)) = 1
13 op ,A (2, x any): ret A(x)

A

Π

~R

2

1

2

1

eCK(Π)
Key-Ind(f, k)

1

Figure 4.2: Left: Specification of the key-indistinguishability game Key-Ind(f, k). Right: Illustration of the real
experiment for adversary A in world Wo(Key-Ind(f, k), eCK(Π)) with resources ~R.

During setup, the game chooses a uniform random bit b. After initializing X (4.2:5), the adversary concurrently
executes a number of sessions of Π by interacting with X’s auxiliary interface. During its attack, the adversary may
learn session keys by making REVEAL-queries to G (4.2:6), in addition to corrupting static and ephemeral keys via
direct access to X. Eventually the adversary makes a (TEST, s, i str)-query to G (4.2:7-9): if the session key for
session (s, i) is available, then it is set to K1; and K0 is set to random k-bit string. Finally, the query returns Kb.
Some time after its TEST-query, the adversary makes a (GUESS, d str)-query to G, which sets the outcome of the game
to be

w = (b = d) ∧ fX (S, (s∗, i∗)) = 1 , (4.1)

where X denotes G’s oracle for X1, session (s∗, i∗) is the TEST-session, and S is the set of sessions whose session keys
have been revealed. In English, the game G deems the adversary to have won if (1) it correctly guesses the challenge
bit b and (2) the TEST-session is fresh according to f . The freshness predicate is given the set S and oracle access
to X so that it may inspect the game and attack state to determine if the adversary is able to trivially compute the
TEST-session key. The adversary makes at most one TEST-query and at most one GUESS-query. The outcome of the
game is the value of w when the adversary halts (4.2:4).

Definition 17 (KEY-IND f,k security). Let ~R be resources, A be an adversary, and Π, G, X, f , and k be as defined
above. Define the KEY-IND f,k advantage of A in attacking Π/~R as

Advkey-ind
f,k

Π/~R
(A) := 2AdvG

ψ

X/~R
(A)− 1 ,

where ψ = φinit ∧ φsess and φinit and φsess are defined in Def. 16. �

The Role of the Freshness Predicate. The precise meaning of the term “freshness” varies in the literature, but
is usually determined by two factors. The first is the corruption model dictating which values can be revealed to the
adversary and when. This determines which security properties can be formalized for the protocol, e.g. (weak) perfect
forward secrecy (PFS), resistance to key-compromise impersonation (KCI) attacks, and so on. (See Krawczyk [95]
for discussion of these and other properties.) The second is the notion of partnered sessions. Partnering takes many
forms in the literature, from matching conversations [30, 99, 62], to protocol-dependent “partnering functions” [31],
to partnering by SIDs computed from the conversation [27, 41]. The most suitable notion of partnering depends on
the number of parties in the protocol, who communicates with whom, and what are the protocol’s goals.

4.1.3 Exercise: Downgrade-Secure Sub-Protocols
For a given game G and transcript predicate ψ, the Gψ-security of an eCK-protocol Π is captured by running an
adversary in world Wo(G, eCK(Π)) in the MAINψ experiment. Our syntax and execution environment are general
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enough to capture a variety of security properties for two-party protocols.7 For any game G, we are able to make
precise statements of the following form:

Given that eCK-protocol Π̃ is Gψ-secure, if the execution of eCK-protocol Π is ψ-indifferentiable from
the execution of eCK-protocol Π̃, then Π is also Gψ-secure.

This provides a way to argue that a protocol Π is secure by “lifting” the existing analysis of Π̃, rather than proving
Gψ-security of Π from scratch. This approach is not always available, however, since Π might be so different from Π̃

that indifferentiability does not hold. It is most useful when Π is related to Π̃ in some manner: perhaps Π was
derived from Π̃ by modifying its specification, say, by adding or deleting some feature; in the next section, we consider
a case where Π specifies the execution of Π̃ in a higher-level protocol. In general we will think of Π as being some
“real” protocol whose security we hope follows from the “reference” protocol Π̃.

Another interpretation is that Π̃ is not a concrete protocol, but rather a “boiled down” version of the full proto-
col Π. In their formal treatment of downgrade-resilient AKE, Bhargavan et al. [41] adopt this view in their approach
to taming the complexity of real-world standards. The first step is to extract from a protocol’s specification (i.e.,
Π) a “sub-protocol” (i.e., Π̃) that captures the features that are essential to the security property being considered.
Downgrade resilience is then proven for the sub-protocol and lifted to the full one by applying their “downgrade
security lifting” theorem [41, Theorem 2], which transforms an attack against the full protocol into an attack against
the sub-protocol. Intuitively, this theorem defines a set of full protocols whose downgrade security follows from the
downgrade security of the sub-protocol; part of the job of the analyst is to ensure if the real protocol is in this set.

Loosely speaking, Bhargavan et al. define a protocol Π̃ to be a “sub-protocol” of Π if there exists an efficient
simulator S such that Π and the “composition of S with Π̃” (cf. [41, Def. 11]) are information-theoretically indistin-
guishable from one another when run in the downgrade resilience experiment. They argue that if Π̃ is a sub-protocol
for Π, then for every adversary A attacking Π there exists an adversary B attacking Π̃ that gets at least as much
advantage.

Intuitively, the statement “the execution of Π is indifferentiable from the execution of Π̃” amounts to a computa-
tional analogue of “Π̃ is a sub-protocol of Π”. In turn, our Lemma 1 and Lemma 2 imply a computational analogue
of [41, Theorem 2] for eCK-protocols. Moreover, we can show that lifting applies to a wide variety of security goals,
and not just downgrade resilience.

Proposition 3 (Generalization of [41, Theorem 2]). Let ψ be a transcript predicate and let Π and Π̃ be eCK-protocols.
Let X = eCK(Π) and X̃ = eCK(Π̃). For every game G, tA-time, n.d. adversary A, and tS-time simulator S there
exist n.d. adversaries D and B for which

AdvG
ψ

X (A) ≤ AdvG
ψ

X̃ (B) + Advindiff
ψ

X,X̃ (D,S) ,

where D is O(tA)-time, and B is O(tAtS)-time.

Proof. The claim follows from a straight-forward application of Lemma 1 and Lemma 2. �

4.2 Case Study: PAKE Extension for TLS 1.3

Existing proposals for PAKE extensions [143, 16] allow passwords to be used either in lieu of certificates or alongside
them in order to “hedge” against failures of the web PKI. Barnes and Friel [16] propose a simple, generic extension
for TLS 1.3 [123] (draft-barnes-tls-pake) that replaces the standard DH key-exchange with a 2-move PAKE. This
straight-forward approach is, arguably, the best option in terms of computational overhead, modularity, and ease-of-
implementation. Thus, our goal will be to instantiate draft-barnes-tls-pake with SPAKE2. We begin with an overview
of the extension and the pertinent details of TLS. We then describe the SPAKE2 protocol and specify its usage in
TLS. We end with our security analysis.

7One exception is ACCE-style games [85], as these require an operator that challenges the adversary to distinguish which of
two messages is being encrypted. One could define an execution environment suitable for these, but we will not do so here.
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4.2.1 Usage of PAKE with TLS 1.3 (draft-barnes-tls-pake)

The TLS handshake begins when the client sends its “ClientHello” message to the server. The server responds
with its “ServerHello” followed by its parameters “EncryptedExtensions” and “CertificateRequest” and authentication
messages “Certificate”, “CertificateVerify”, and “Finished”. The client replies with its own authentication messages
“Certificate”, “CertificateVerify”, and “Finished”. The Hellos carry ephemeral DH key shares signed by the parties’
Certificates, and the signatures are carried by the CertificateVerify messages. Each party provides key confirmation
by computing a MAC over the handshake transcript; the MACs are carried by the Finished messages.

The DH shared secret is fed into the “key schedule” [123, §7.1] that defines the derivation of all symmetric keys
used in the protocol. Key derivation uses the HKDF function [92], which takes as input a “salt” string, the “initial
key material (IKM)” (i.e., the DH shared secret), and an “information” string used to bind derived keys to the
context in which they are used in the protocol. The output is used as a salt for subsequent calls to HKDF .8 The
first call is salt ← HKDF (0k, psk , derived), where k ≥ 0 is a parameter of TLS called the hash length9 and psk is
the pre-shared key. (If available, otherwise psk = 0k.) Next, the parties derive the client handshake-traffic key10

K1 ← HKDF (salt , dhe, info1), the server handshake-traffic key K0 ← HKDF (salt , dhe, info0), and the session key
K ← HKDF (salt , dhe, derived). Variable dhe denotes the shared secret. Each information string encodes both Hellos
and a string that identifies the role of the key: c hs traffic for the client and s hs traffic for the server. The traffic keys are
used for encrypting the parameter and authentication messages and computing the Finished MACs, and the session
key is used for encrypting application data and computing future pre-shared keys.

Extensions. Protocol extensions are typically comprised of two messages carried by the handshake: the request,
carried by the ClientHello; and the response, carried by the ServerHello or by one of the server’s parameter or
authentication messages. Usually the request indicates support for a specific feature and the response indicates
whether the feature will be used in the handshake. In draft-barnes-tls-pake, the client sends the first PAKE message
in an extension request carried by its ClientHello; if the server chooses to negotiate usage of the PAKE, then it sends
the second PAKE message as an extension response carried by its ServerHello. When the extension is used, the
PAKE specifies the values of psk and dhe in the key schedule.

At first brush, it may seem “obvious” that the security of the extension follows immediately from the security
of the PAKE, since the PAKE is run without modification. There are two important points to note here. The first
is that the extension is underspecified: the output of a PAKE is generally a single session key, so it is up to the
implementer to decide how the session key is mapped to the inputs of the key schedule (i.e., psk and dhe). The
second point is that the PAKE is not only used to derive the session key (used to protect application data), but also
to encrypt handshake messages and compute MACs. As a result, whether this usage is secure or not depends on the
concrete protocol and how it is implemented in the extension.

4.2.2 The SPAKE2 Protocol

Designed by Abdalla and Pointcheval [4], SPAKE2 (pronounced “S-PAKE-TWO”) is simpler than the other PAKE
candidates [86, 81], which makes it a good target for use in a higher-level protocol [144]. It uses just two primitives:
a prime-order, cyclic group G = (G, ·) and a hash function H : T → {0, 1}k, where T = {0, 1}∗ × {0, 1}∗ × G × G ×
Z|G| × G.The client and server share a password sk ∈ Z|G|, which serves as the static key; and each of the parties
has an ephemeral key drawn uniformly from Z|G|. The protocol has public parameters N1, N0 ∈ G chosen during a
trusted setup phase that precedes the protocol’s execution.11

The 2-move protocol is based on EKE [35]. The first message is sent by the client and consists of the client’s
identity c and password-masked key-share X∗1 = gek1·N sk

1 , where g ∈ G denotes the group generator, sk the password,
and ek1 the client’s ephemeral key. The server’s reply consists of the server’s identity s and key share X∗0 = gek0·N sk

0 ,
where ek0 denotes its ephemeral key. The shared secret is computed as Z = (X∗p · N−sk

p )ek1−p , where p = 1

8In fact, the output of HKDF is variable length, and the desired output length is a parameter of the function. We will think
of this parameter as being fixed.

9The hash length is the number of bits output by the negotiated hash function. This is the same hash function used
for HKDF .

10The TLS spec uses the term “traffic secret” rather than “traffic key”.
11The public parameters are usually referred to as M and N .
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spec SPake2-APC,SG :
1 var PW object, N1, N0 elemG
2 op (SETUP): N1, N0 ←← G
3 op (MOVES): ret 2
4 op ,R (SGEN): pk ← [ ]
5 for i ∈ C ∪ S do pk i ← (N1, N0)
6 ret (pk ,PWR( ))
7 op (EGEN, . . .): ek ←← Z|G|; ret ek
8 op (GAME ST, x, i str,
9 (st , j,K str, X∗1 , X∗0 elemG)):

10 if st 6= done then ret ⊥
11 if x = sid then ret (X∗1 , X

∗
0 )

12 if x = pid then ret j
13 if x = key then ret K

14 //Client sends KEX1
15 op (SEND, c elemC , sk , ek int,⊥,⊥,⊥):
16 X∗1 ← gek ·N sk

1

17 ret ((wait, X∗1 ), (c,X∗1 ))
18 //Client on KEX0
19 op ,R (SEND, c elemC , sk , ek int,⊥,
20 (wait, X∗1 elemG), (s elemS , X∗0 elemG)):
21 Z ← (X∗0 ·N−sk

0 )ek

22 ikm ← (c, s,X∗1 , X
∗
0 , sk , Z)

23 K ←R1(ikm)
24 ret ((done, s,K,X∗1 , X

∗
0 ),⊥)

25 // Server on KEX1 sends KEX0
26 op ,R (SEND, s elemS , sk table, ek int,⊥,⊥
27 (c elemC , X∗1 elemG)):
28 X∗0 ← gek ·N skc

0 ; Z ← (X∗1 ·N−skc
1 )ek

29 ikm ← (c, s,X∗1 , X
∗
0 , skc, Z)

30 K ←R1(ikm)
31 ret ((done, c,K,X∗1 , X

∗
0 ), (s,X∗0 ))

32 op (SEND, . . .): ret (fail,⊥) // Invalid message

Figure 4.3: Protocol SPake2-APC,SG , where G = (G, ·) is a prime-order, cyclic group with generator g and S, C ⊆
{0, 1}∗ are finite, disjoint, non-empty sets. Object PW is a symmetric password generator for S, C,P for some
dictionary P ⊆ Z|G|.

for the server and p = 0 for the client. Finally, each party computes the session key as K = H(ikm), where
ikm = (c, s,X∗1 , X

∗
0 , sk , Z), and terminates. The SID is the pair of key shares (X∗1 , X

∗
0 ). The PID is the identity of

the peer: s for the client and c for the server.
This simple protocol is formalized by the eCK-protocol SPake2-APC,SG (PW ) in Figure 4.3 (cf. [1, Figure 1]).

Sets C and S are finite, disjoint, non-empty sets of strings denoting the clients and servers respectively. The first
key-exchange message, which we call KEX1, is produced by the operator on lines 4.3:15-17 that specifies client c’s
response to a SEND-query with (reading the last three inputs from left to right) the session input ⊥, state ⊥, and
inbound message ⊥. This moves c into the wait state (4.3:17) and outputs KEX1. This message is consumed by the
operator on lines 4.3:26-31, which specifies server s’s response to a SEND-query with input ⊥, state ⊥, and inbound
message c,X∗1 (KEX1). This moves s into the done state and outputs KEX0. This message is consumed by the
operator on line 4.3:19-24, which specifies client c’s response to a SEND-query on input ⊥, in the wait state, and on
inbound message s,X∗0 (KEX0).

Receipt of an invalid message, i.e., any SEND-query other than a properly formatted KEX message, causes the
session to move to the fail state, as shown on line 4.3:32. Note that symbol “. . .” in the operator’s pattern is treated
like a wildcard so that (SEND, . . .) matches any SEND-query that did not match any of the preceding operators.

Key derivation is carried out by a call to R1. To obtain the concrete protocol, one would use the hash function H
to instantiate the first resource in the experiment. However, since all existing analyses model H as an RO [4, 20, 1],
we will also use an RO. (See Theorem 3 below.)

The protocol is parameterized by an object PW used to generate the static keys. Syntactically, we require that PW

halts and outputs a table sk for which sk [s][c] = sk [c] ∈ P for all (c, s) ∈ C × S and some set P ⊆ Z|G|, called the
dictionary. We refer to such an object as a symmetric password generator for C,S,P. Following Bellare et al. [27],
each client c is in possession of a single password sk [c] ∈ P, used to authenticate to each server; and each server s
is in possession of a table sk [s] that stores the password sk [s][c] shared with each client c. Generally speaking—and
for SPAKE2 in particular [4, 20, 1]—passwords are assumed to be uniformly and independently distributed over the
dictionary P. In this dissertation, we will say that such a generator is uniform.12

12The password generator models the selection and distribution of passwords among the parties in the protocol. The assump-
tion that passwords are sampled uniformly and independently from some dictionary is widely regarded as overly optimistic
(regardless of the dictionary’s size). For this reason, the UC framework [53] has emerged as the de facto setting for studying
PAKEs [56], since the ideally functionality can be defined for any password distribution. Nevertheless, the concrete security of
UC-secure PAKEs against dictionary attacks [27] has, to the best of our knowledge, only been studied under this optimistic
assumption (cf. [56, §A]). We suspect, however, that security can be proven under weaker assumptions about the password
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Requirements for SPAKE2 Standardization. Although SPAKE2 is being considered for adoption as a stan-
dalone protocol standard, it is clear from existing drafts [16, 98] and discussions on the CFRG mailing list [44, 144]
that the protocol would not be adopted without modification. In our treatment, we will address what we view to be
the two most important changes. The first is to remove the need for trusted setup. Rather than rely on N1, N0 being
generated in a trustworthy manner, the preferred approach [144] is to pick distinct constants const1, const0 ∈ {0, 1}∗

and compute the parameters as N1 ← HG(const1) and N0 ← HG(const0), where HG : {0, 1}∗ → G is a hash function
suitable for the given group G (e.g., a suitable “hash-to-curve” algorithm [73]). The second is that, when SPAKE2
is used with key confirmation—either in the stand alone protocol or embedded in TLS—the protocol should provide
an option for agreement on authenticated associated data [98].

4.2.3 Securely Instantiating draft-barnes-tls-pake with SPAKE2

Refer to SPake2-TLSC,SG (PW , const1, const0) specified in Figure 4.4. This object partially specifies the usage of
SPAKE2 in TLS. We say “partially” because most of the details of TLS are provided by calls to interface oracle A,
which are answered by the adversary’s auxiliary interface in the real experiment. Calls to R1 and R2 are answered
by, respectively, an RO for HKDF and an RO for HG. Before being passed to HKDF , the input is first encoded using
an object en with the following properties.

Definition 18 (Encoders and represented sets). A represented set is a computable set X for which ⊥ 6∈ X (cf.
“represented groups” in [2, §2.1]). Let X be a represented set. An X -encoder is a functional, halting object en that
exports the following operators:

– (1, x elemX )-(M str): the encoding algorithm, returns the encoding M of x as a string.

– (0,M str)-(x elemX∪{⊥}): the decoding algorithm, returns the element x of X encoded by string M (or ⊥
if M does not encode an element of X ).

Correctness requires that en0(en1(x)) = x for every x ∈ X . �

The Hellos carry the SPAKE2 key-exchange messages. The first is encoded by the client on line 4.4:22 and
decoded by the server on line 39, and the second is encoded by the server on line 42 and decoded by the client on
line 28. Value ikm (the input to H in SPAKE2) is passed to procedure KDF (54-65), which is used to derive the
traffic and session keys. Oracle A (which points to the adversary’s aux. interface in the security experiment) chooses
the salt and information strings, subject to the constraint that the information strings are distinct.

We refer to the ClientHello as HELLO1 and to the ServerHello as HELLO0. Our spec lumps all other handshake
messages into two: AUTH0 for the server’s parameter and authentication messages (EncryptedExtensions...Finished);
and AUTH1 for the client’s authentication messages (Certificate...Finished). This consolidates all traffic-key depen-
dent computations into four A-queries: AUTH0 is computed on line 4.4:45 and verified on line 32 and AUTH1 is
computed on line 33 and verified on line 50. This strategy allows us to accurately capture the details of TLS without
exhaustively specifying them.

Design Considerations. In the security analysis (cf. Theorem 3) we assume the adversary is non-degenerate,
meaning it is specified as NoDeg(M,SD) for some object M and some functional object SD (see Def. 4). Hence,
each A-query is answered deterministically by SD and without carrying state between calls. This restriction turns out
to be crucial for keeping the security bound tight: in particular, we need it to be the case that KEX1 and KEX0 can
be correctly decoded. (Hence the check that decoding succeeds on lines 4.4:22 and 42; refer to the proof of Theorem 3
for details.) As a consequence, we need to be explicit about the use of randomness in order to realistically capture
the details of TLS. Specifically, we modify the ephemeral key generator (EGEN) so that it produces the amount of
randomness required by the TLS handshake (as determined by SD ; see line 4.4:9).

Recall that draft-barnes-tls-pake requires the PAKE to specify the inputs psk and dhe to the key schedule, and
that psk is used to derive the salt via the first call to HKDF . The salt is computed by an A-query (4.4:58), meaning
we do not much care how it is chosen. Note that SD is given oracle access to the resources in the experiment (Def. 4),
so the auxiliary algorithm may compute salt according to the TLS spec.

distribution, say, using the distribution’s (conditional) min-entropy.
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spec SPake2-TLSC,SG : //A points to A2 (via a game); R to resources

1 var PW , en object, const1, const0 str
2 op (MOVES): ret 3
3 op ,R (SGEN): pk ← [ ]
4 N1 ← R2(const1); N0 ← R2(const0)
5 for i ∈ C ∪ S do pk i ← (N1, N0)

6 ret (pk ,PWR( ))
7 opA (EGEN, i elemC∪S , a any):
8 var ρ elemN, r str
9 ρ← A(rnd, i, a); if ρ 6= ⊥ then r ←← {0, 1}ρ

10 ek ←← Z|G|; ret (ek , r)
11 op (GAME ST, x, i str,
12 (st , j,K str, X∗1 , X∗0 elemG , . . .)):
13 if st 6∈ {done, s wait} then ret ⊥
14 if x = sid then ret (X∗1 , X∗0 )
15 if x = pid then ret j
16 if x = key then ret K
17

18 //Client sends HELLO1

19 opA,R (SEND, c elemC , sk , (ek int, r any), a any,⊥,⊥):
20 var hello1 str
21 N1 ← R2(const1); X∗1 ← gek ·N sk

1
22 hello1 ← A(c hello, r , a, c,X∗1 ); if A(c kex, hello1) 6= (c,X∗1 ) then ret (fail,A(proto err))
23 ret ((c wait, X∗1 , hello1), hello1)
24 //Client on (HELLO0, AUTH0) sends AUTH1

25 opA,R (SEND, c elemC , sk , (ek int, r any), a any,
26 (c wait, X∗1 elemG , hello1 str), (hello0, auth0 str)):
27 var s elemS , X∗0 elemG , auth1 str
28 (s,X∗0 )← A(s kex, hello0); if ⊥ ∈ {s,X∗0} then ret (fail,A(proto err))

29 N0 ← R2(const0); Z ← (X∗0 ·N−sk0 )ek ; ikm ← (c, s,X∗1 , X
∗
0 , sk , Z)

30 tr ← hello1 ‖ hello0; (K1,K0,K)← KDF(ikm, c, s, hello1, hello0)
31 if K1 = ⊥ then ret (fail,A(proto err))
32 if A(s verify,K0, (a, tr), auth0) 6= 1 then ret (fail,A(verify err))
33 tr ← tr ‖ auth0; auth1 ← A(c auth,K1, (a, tr), r)
34 ret ((done, s,K,X∗1 , X∗0 ), auth1)
35

36 // Server on HELLO1 sends (HELLO0, AUTH0)

37 opA,R (SEND, s elemS , sk table, (ek int, r any), a any,⊥, hello1 str):
38 var c elemC , X∗1 elemG , hello0, auth0 str
39 (c,X∗1 )← A(c kex, hello1); if ⊥ ∈ {c,X∗1} then ret (fail,A(proto err))

40 N1 ← R2(const1); Z ← (X∗1 ·N
−skc
1 )ek ; ikm ← (c, s,X∗1 , X

∗
0 , sk c, Z)

41 N0 ← R2(const0); X∗0 ← gek ·N skc
0

42 hello0 ← A(s hello, r , a, s,X∗0 ); if A(s kex, hello0) 6= (s,X∗0 ) then ret (fail,A(proto err))
43 tr ← hello1 ‖ hello0; (K1,K0,K)← KDF(ikm, c, s, hello1, hello0)
44 if K1 = ⊥ then ret (fail,A(proto err))
45 auth0 ← A(s auth,K0, (a, tr), r); tr ← tr ‖ auth0
46 ret ((s wait, c,K,X∗1 , X∗0 ,K1, tr), (hello0, auth0))
47 // Server on AUTH1

48 opA,R (SEND, s elemS , sk table, (ek int, r any), a any,
49 (s wait, c,K str, X∗1 , X∗0 elemG ,K1, tr str), auth1 str):
50 if A(c verify,K1, (a, tr), auth1) 6= 1 then ret (fail,A(verify err))
51 ret ((done, c,K,X∗1 , X∗0 ),⊥)
52

53 opA (SEND, . . .): ret (fail,A(unexpected message))

procedure KDF(ikm, c, s, hello1, hello0):
54 var info1, info0, info, salt str
55 info1 ← A(c hs traffic, hello1, hello0)
56 info0 ← A(s hs traffic, hello1, hello0)
57 info ← A(derived, c, s)
58 salt ← A(salt, c, s)
59 if |{info1, info0, info}| 6= 3∨
60 ⊥ ∈ {info1, info0, info, salt}
61 then ret (⊥,⊥,⊥)
62 K1 ← R1(salt , en1(ikm), info1)
63 K0 ← R1(salt , en1(ikm), info0)
64 K ← R1(salt , en1(ikm), info)
65 ret (K1,K0,K)

Figure 4.4: Protocol SPake2-TLSC,SG , where PW , G = (G, ·), g, C, and S are as defined in Figure 4.3. Object en is
a
(
{0, 1}∗ × {0, 1}∗ × G × G × Z|G| × G

)
-encoder, where G is a represented set (Def. 18).
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The value of dhe is the same as the input ikm to H in the original SPAKE2 protocol (4.3:22). A more natural
approach might have been to set dhe to H(ikm) rather than ikm, i.e., let dhe be the session key derived in the original
protocol. This design may work, but our approach simplifies the proof, as well as being a bit more efficient.

The session key computed by the server is made available in the game state (via the SESSION␣ST-operator) prior to
key confirmation (4.4:13). As we discuss in the proof of Theorem 3, this is required for indifferentiability in the eCK
environment, and hence is an artifact of the formal model. (Intuitively, there is no reason why waiting to release a
session key until later should affect security.)

Fail Closed. Finally, a feature of our instantiation of draft-barnes-tls-pake is that the client and server “fail closed”.
This means that: (1) if the client does not indicate support, then the server must tear down the session (4.4:39); and
(2) if the client indicates support for the extension in its request, but the server does not indicate usage in its response,
then the client must tear down the session (4.4:28). In fact, Barnes-Friel [16] allow the protocol to “fail open”, meaning
the client and server may fallback to the standard authentication mechanism if available. But this makes little sense
when using PAKE to hedge against PKI failures, since an adversary in possession of the server’s signing key (or one
of the signing keys in the certificate chain) can easily downgrade the connection [41] to certificate-only authentication
and impersonate the server.

Security. We now derive the concrete security of this usage of SPAKE2. Our analysis is in the weak corruption model
of Bellare et al. [27], which assumes that only static keys (i.e., passwords) and not ephemeral keys can be revealed
to the attacker. This is without loss of generality, as all existing analyses of SPAKE2 assume the same corruption
model [4, 20, 1]. Our proof also uses the GDH assumption [109], defined below.

Definition 19 (Predicate φwc). Let φwc(tx ) = (@α) txα∼(2, EK, . . .). �

Definition 20 (The GDH problem). Let G = (G, ·) be a cyclic group with generator g ∈ G. A DDH oracle for G is
a halting object DDH for which DDH (X,Y, Z) = 1 holds if and only if loggX · logg Y = logg Z for all X,Y, Z ∈ G.
Define AdvgdhG (A) := Pr

[
x, y ←← Z|G| : ADDH (gx, gy) = gxy

]
to be the advantage of an adversary A in solving the

GDH problem for G. Informally, we say the GDH problem is hard for G if the advantage of every efficient adversary
is small. �

Let k ≥ 0 be an integer; let const1, const0 be distinct strings; let G = (G, ·) be a prime-order cyclic group;
let C,S ⊆ {0, 1}∗ be finite, disjoint, non-empty sets; let P ⊆ Z|G| be a dictionary; and let PW be a uniform,
symmetric password-generator for C,S,P. Define T to be the set {0, 1}∗ × {0, 1}∗ × G × G × Z|G| × G. Let Π =

SPake2-TLSC,SG (PW , const1, const0), Π̃ = SPake2-APC,SG (PW ), X = eCK(Π), and X̃ = eCK(Π̃). Let ψ =

φinit ∧ φsess ∧ φwc. The following says that for any game G, the Gψ-security of X (in the ROM for HKDF and HG)
follows from the Gψ-security of X̃ (in the ROM for H) under the GDH assumption.

Theorem 3. Let F be an RO from ({0, 1}∗)3 to {0, 1}k, R be an RO from {0, 1}∗ to G, and H be an RO from T
to {0, 1}k. Let DDH be a DDH oracle for G. For every game G and tA-time, n.d. adversary A making qr resource
queries, qs SEND-queries, and qe EXEC-queries, there exist an n.d. adversary B and GDH-adversary C such that

AdvG
ψ

X/(F,R)(A) ≤ AdvG
ψ

X̃/(H,DDH )(B) +

2qeAdvgdhG (C) +
2qs
|P| +

(qs + 2qe)
2

2|G| ,

where: DDH is tDDH -time; B runs in time O(T̂ ) and makes at most qs SEND-queries, qe EXEC-queries, O(Q̂) DDH -
queries, and qr H-queries; C runs in time O(T̂ ) and makes at most O(Q̂) DDH -queries; T̂ = tA(tA + qr · tDDH ); and
Q̂ = qr(qs + qe).

Before giving the proof, let us say a few words about the bound. The claim is proved by first applying Lemma 1,
then applying Lemma 2 so that we can argue security using the ψ-indifferentiability of X/(F,R) from X̃/(H,DDH ).
The bound reflects the loss in security that results from using the PAKE to derive the traffic keys. The GDH-
advantage term is used to bound the probability that derivation of one of these keys during an honest run of the
protocol (via EXEC) coincides with a previous RO query; the 2qs/|P|-term is used to bound the probability of the
same event occurring during an active attack (via SEND). The simulator kills a session if the SID ever collides with
another session other than the partner, which accounts for the final term.
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Proof of Theorem 3. By Lemma 1, for every tS-time simulator S there exists a O(tA)-time adversary D′ and a
O(tAtS)-time adversary B such that

AdvG
ψ

X/(F,R)(A) ≤ AdvG
ψ

X̃/(H,DDH )(B) + Advsr-indiff
ψ

W/(F,R),W̃/(H,DDH )(D
′, S) . (4.2)

By Lemma 2 there exists a O(tA)-time adversary D such that

Advsr-indiff
ψ

W/(F,R),W̃/(H,DDH )(D
′, S) ≤ Advsr-indiff

ψ

X/(F,R),X̃/(H,DDH )(D,S) . (4.3)

In the remainder we exhibit an efficient simulator S and adversary C for which

Advsr-indiff
ψ

X/(F,R),X̃/(H,DDH )(D,S) ≤ 2qeAdvgdhG (C) +
2qs
|P| +

(qs + 2qe)
2

2|G| . (4.4)

Let g ∈ G denote the generator of G and let 1G ∈ G denote the group identity. LetM denote the adversary’s main
algorithm and let SD denote the adversary’s auxiliary algorithm (Def. 4). Let i∗ denote the lexicographically first
element of C ∪ S. We shall assume that the adversary is ψ-respecting, meaning that when M halts, the transcript is
deemed valid by ψ with probability 1. This is without loss of generality because ψ is efficiently computable. As a
result, we may assume that the adversary initializes the parties first, the adversary initializes each session once and
before sending a message to it, and the adversary does not reveal ephemeral keys.

The simulator is S = Sim(SD , const1, const0, i
∗) as specified in Figures 4.5, 4.6, and 4.7. It is is not especially

complicated, but there are a number of details to attend to. So, before we derive Eq. (4.4), let us first take a moment
to clarify its operation. Recall that the simulator gets access to two oracles in the reference experiment: one for the
auxiliary interface of X̃, which is used to execute the reference protocol Π̃; and another for resources (H,DDH ). Its
job is to simulate aux./resource queries for X/(F,R). The central problem it must solve is that the adversary has
direct access to the main interface of X̃, which provides it with the game and attack state. Hence, the adversary
needs to use its own oracles in a way that ensures the game and attack state are consistent with the adversary’s view
of the execution. In essence, our strategy is to “embed” a session of the reference protocol into each simulation of the
real one.

Answering Aux.-Interface Queries. The simulator answers auxiliary queries as follows. When the adversary (i.e.,
M) wants to initiate a session (s, i) with input a, the simulator queries X (INIT, s, i,⊥) and stores α̂is ← a, thereby
initiating the same session in the reference environment and storing the initial input for subsequent queries to SD

(see line 4.5:12 and the definition of Init on line 56.) For each session (s, i) the simulator maintains a variable π̂is,
which will be used to keep state for the simulated session. When M wishes to send a message m to session (s, i), the
simulator forwards (s, i,m) to interface Send defined in Figure 4.6: this induces at most one SEND-query to reference
session (s, i), updates the simulation state π̂is, and produces simulated output (4.5:14). To simulate a passive attack,
the simulator first makes an EXEC-query (4.5:17), then extracts the password-masked key-shares from the execution
trace (22) and uses them in a sequence of calls to Send to simulate an honest run of the real protocol (23-26).

Next we describe Send; refer to Figure 4.6. The caller passes in a bit p and an element Y of G. The bit indicates
whether the session is under passive attack (p = 1; see lines 4.5:23-26) or active attack (p = 0; see line 14). In case
of a passive attack, the key shares are provided by the caller (i.e., the key share is equal to input Y ∈ G); in case of
an active attack, the key shares are obtained by making queries to the corresponding session (4.6:4 and 22). Except
for simulation of the traffic keys, all computations are just as they are in the real protocol. The adversary’s auxiliary
interface is used to encode the TLS messages, and because the adversary is non-degenerate, the simulator may use
the auxiliary algorithm SD as a sub-routine. Thus, each call to the A oracle in Figure 4.4 is substituted in Figure 4.5
by a call to procedure SD, which forwards the call to SD (see line 4.5:50).

In the real experiment (Figure 4.5), the A oracle is also called upon at various points in order to decide whether
execution has encountered an error and will move to the fail state (see lines 4.4:22, 28, 31, 32, 39, 42, 44, 50, and
53). Whenever a session is in this state, the game state should not be obtainable via the main interface: it should
only be available in the done state or by the server when it is waiting for key confirmation (4.4:13). To emulate this
behavior, the simulator queries X (SEND, s, i, kill session), which forces the reference session into the fail state, since “kill
session” is not a valid protocol message (4.3:32). The call is carried out by Fail (4.5:57-58), which is called whenever
the simulated session is meant to move into the fail state.
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spec Sim: //X points to X̃2; R to resources (H,DDH )

1 var SD object, const1, const0, i
∗ str

2 var p̂w , r̂ , α̂, π̂, derived , traffic, T, U table
3 var Q set, N1, N0 elemG
4 op (SETUP): SD(SETUP)
5 p̂w , r̂ , α̂, π̂, derived , traffic, T, U ← [ ]; Q ← ∅
6

7 //Adversarial interface
8 opX (2, PK, i str): ret X (PK, i)
9 opX (2, SK, i str):

10 if i ∈ C then pw i ← X (SK, i); ret pw i

11 else sk ← X (SK, i); for j ∈ C do { p̂w j ← sk j }; ret sk

12 opX ,R (2, INIT, s, i str, a any): Setup(s, i); ret Init(s, i, a)
13 opX ,R (2, SEND, s, i str,m any): Setup(s, i)
14 (π̂is, out)← Send(0, 1G, s, i, r̂

i
s, α̂

i
s, π̂

i
s,m); ret out

15 opX ,R (2, EXEC, s1, i1, s0, i0 str, a1, a0 any):
16 Setup(s1, i1); Setup(s0, i0)
17 tr ← X (EXEC, s1, i1, s0, i0, a1, a0)
18 if i1 6∈ C ∨ i0 6∈ S then
19 err ← SD(unexpected message)
20 ret (err , err , err , err)
21 else
22 (( , X∗1 ), ( , X∗0 ), )← tr ; tr ← ( )
23 (π1, out)← Send(1, X∗1 , s1, i1, a1,⊥,⊥); tr ← tr . out
24 (π0, out)← Send(1, X∗0 , s0, i0, a0,⊥, out); tr ← tr . out
25 (π1, out)← Send(1, X∗1 , s1, i1, a1, π1, out); tr ← tr . out
26 (π0, out)← Send(1, X∗0 , s0, i0, a0, π0, out); tr ← tr . out
27 ret tr
28

29 //Resource interface
30 opX ,R (3, (1, (salt , encoded , info str))):
31 Setup(⊥, i∗); ret R(salt , encoded , info)
32 opX ,R (3, (2, const str)): Setup(⊥, i∗); ret R(const)

interface R:
33 op (salt , encoded , info str):
34 if en0(encoded) 6= ⊥ then
35 (i, j,X∗1 , X

∗
0 , sk , Z)← en0(encoded)

36 A← X∗1 ·N−sk
1 ; B ← X∗0 ·N−sk

0

37 if R2(A,B,Z) = 1 then
38 // If derived key, then use reference RO.
39 if derived [X∗1 , X

∗
0 , i, j] = 1 then

40 ret R1(en0(encoded))
41 // If traffic key, then simulate response.
42 K ← traffic[X∗1 , X

∗
0 , i, j, salt , info]

43 if K 6= ⊥ then ret K
44 if T [salt , encoded , info] = ⊥ then
45 T [salt , encoded , info]←← {0, 1}k
46 ret T [salt , encoded , info]
47 op (const str):
48 if Uconst = ⊥ then Uconst ←← G
49 ret Uconst

procedure SD(in):
50 ret SDR(in)

procedure Setup(s, i):
51 var ρ elemN
52 (N1, N0)← X (PK, i)
53 Uconst1 ← N1; Uconst0 ← N0

54 if s 6= ⊥ then ρ← A(rnd, i, a)
55 if ρ 6= ⊥ ∧ r̂ is = ⊥ then r̂ is ←← {0, 1}ρ

procedure Init(s, i, a):
56 αis ← a; ret X (INIT, s, i,⊥)

procedure Fail(s, i, err):
57 X (SEND, s, i, kill session)
58 ret (fail,SD(err))

Figure 4.5: Specification of simulator S for proof of Theorem 3. Send is defined in Figure 4.6.

Procedure SimKDF (Figure 4.7) is called upon to simulate computation of the handshake traffic keys K1 and K0.
Its job is to pick these in a way that provides the adversary with a consistent view of the simulation of RO F . Given
only the key shares, the simulator must determine whether the adversary already “knows” what the traffic keys should
be. The difficulty is that there are conditions under which the shared secret might be known to the adversary, but is
hard to compute for the simulator. Our solution is to distinguish between queries for which the adversary definitely
knows what the keys ought to be and queries for which the adversary is “unlikely” to know the keys. In the former
case, we can arrange the simulation so that the correct keys are always output. In the latter, we will guess that
the adversary does not know the correct output, generate fresh keys, and provide a consistent simulation of F going
forward. This back-patching strategy might fail to provide a consistent simulation, so we will need to argue that the
probability of failure is small.

Answering Resource Queries and Simulating Traffic Keys. Procedure SimKDF has the following inputs:
a bit r indicating the role of the session (r = 1 for client; r = 0 for server); the bit p indicating whether session is
under passive attack (p = 1) or active attack (p = 0); the client i and server j; the Hellos hello1 and hello0; and
the key shares X∗1 and X∗0 of the client and server respectively. The simulator maintains a set Q used to check for
and exclude SID collisions (declared at 4.5:3, used at 4.7:3-4): if (r,X∗1 , X

∗
0 ) ∈ Q, then the procedure immediately

halts and returns (⊥,⊥); otherwise, it adds (r,X∗1 , X
∗
0 ) to Q and proceeds. This step ensures independence of traffic

keys computed by partnered sessions, which will simplify the analysis. Next, the procedure computes the salt salt

and information strings info1, info0, info as usual (4.7:6-13). It then sets derived [X∗1 , X
∗
0 , i, j]← 1 in a table derived ,

which will be used by the RO simulation.
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interface Send:
1 //Client sends HELLO1
2 op (p bool, Y elemG , s str, i elemC , a any,⊥,⊥):
3 var hello1 str; X∗1elemG
4 if p = 1 then X∗1 ← Y else ( , X∗1 )← X (SEND, s, i,⊥) //wait

5 hello1 ← SD(c hello, r̂ is, a, i,X
∗
1 ); if SD(c kex, hello1) 6= (i,X∗1 ) then ret Fail(s, i, proto err)

6 ret ((c wait, X∗1 , hello1), hello1)
7 //Client on HELLO0, AUTH0 sends AUTH1
8 op (p bool, Y elemG , s str, i elemC , a any, (c wait, X∗1 elemG , hello1 str), (hello0, auth0 str)):
9 var j elemS , X∗0 elemG , auth1 str

10 (j,X∗0 )← SD(s kex, hello0); if ⊥ ∈ {j,X∗0} then ret Fail(s, i, proto err)
11 if p = 0 then X (SEND, s, i, (j,X∗0 )) // done
12 tr ← hello1 ‖ hello0; (K1,K0)← SimKDF(1, p, i, j, hello1, hello0, X

∗
1 , X

∗
0 )

13 if K1 = ⊥ then ret Fail(s, i, proto err)
14 if SD(s verify,K0, (a, tr), auth0) 6= 1 then ret Fail(s, i, verify err)
15 tr ← tr ‖ auth0; auth1 ← SD(c auth,K1, (a, tr), r̂ is)
16 ret (done, auth1)
17

18 // Server on HELLO1 sends HELLO0, AUTH0
19 op (p bool, Y elemG , s str, j elemS , a any,⊥, hello1 str):
20 var i elemC , X∗1 , X∗0 elemG , hello0, auth0 str
21 (i,X∗1 )← SD(c kex, hello1); if ⊥ ∈ {i,X∗1} then ret Fail(s, j, proto err)
22 if p = 1 then X∗0 ← Y else ( , X∗0 )← X (SEND, s, j, (i,X∗1 )) // done

23 hello0 ← SD(s hello, r̂ js , a, j,X
∗
0 ); if SD(s kex, hello0) 6= (j,X∗0 ) then ret Fail(s, j, proto err)

24 tr ← hello1 ‖ hello0; (K1,K0)← SimKDF(0, p, i, j, hello1, hello0, X
∗
1 , X

∗
0 )

25 if K1 = ⊥ then ret Fail(s, j, proto err)
26 auth0 ← SD(s auth,K0, (a, tx ), r̂ js ); tr ← tr ‖ auth0

27 ret ((s wait,K1, tr), (hello0, auth0))
28 // Server on AUTH1
29 op (p bool, Y elemG , s str, j elemS , a any, (s wait,K1, tr str), auth1 str):
30 if SD(c verify,K1, (a, tr), auth1) 6= 1 then ret Fail(s, j, verify err)
31 ret (done,⊥)
32

33 op (p bool, Y elemG , s, i str, . . .): ret Fail(s, i, unexpected message)

Figure 4.6: Specification of simulator S for proof of Theorem 3 (continued from Figure 4.5). Procedure SimKDF is
defined in Figure 4.7; SD and Fail are defined in Figure 4.5.
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procedure SimKDF(r, p, i, j, hello1, hello0, X
∗
1 , X

∗
0 ):

1 var K1,K0, info1, info0, info, salt str
2 // Exclude SID collision.
3 if (r,X∗1 , X

∗
0 ) ∈ Q then ret (⊥,⊥)

4 Q ← Q∪ {(r,X∗1 , X∗0 )}
5 //Compute salt and info string.
6 info1 ← SD(c hs traffic, hello1, hello0)
7 info0 ← SD(s hs traffic, hello1, hello0)
8 info ← SD(derived, i, j)
9 salt ← SD(salt, i, j)

10 // For key sep., each info string must be distinct.
11 if |{info1, info0, info}| 6= 3∨
12 ⊥ ∈ {info1, info0, info, salt} then
13 ret (⊥,⊥)
14 //Mark session key as derived.
15 derived [X∗1 , X

∗
0 , i, j]← 1

16 // Simulate computation of traffic keys.
17 for b ∈ {0, 1} do
18 //Check if the output is definitely known.
19 if p = 0 ∧ p̂w i 6= ⊥ then
20 A← X∗1 ·N

−p̂wi
1 ; B ← X∗0 ·N

−p̂wi
0

21 //The following can be checked in O(tDDH · qr)-time.
22 if (∃Z ∈ G)R2(A,B,Z) = 1∧
23 T [salt , en1(i, j,X∗1 , X

∗
0 , p̂w i, Z), infob] 6= ⊥ then

24 Kb ← T [salt , en1(i, j,X∗1 , X
∗
0 , p̂w i, Z), infob]

25 // If check fails, guess that the output is unknown.
26 if Kb = ⊥ then
27 if traffic[X∗1 , X

∗
0 , i, j, salt , infob] = ⊥ then

28 traffic[X∗1 , X
∗
0 , i, j, salt , infob]←← {0, 1}k

29 Kb ← traffic[X∗1 , X
∗
0 , i, j, salt , infob]

30 ret (K1,K0)

Figure 4.7: Specification of simulator S for proof of Theorem 3 (continued from Figure 4.6). SD is defined in
Figure 4.5.

The simulator maintains a table p̂w of passwords that are known to the adversary at any given time (4.5:9-
11). To simulate computation of traffic key Kb, we first check if the adversary has definitely observed Kb being
output from the RO. In case the client’s password is known (p̂w i 6= ⊥) and the session is under active attack,
we unmask the key shares (4.7:20) to get ephemeral public keys A and B for the client and server respectively.
We then consult a table T (used by the RO simulation) to determine if the query corresponds to a previous RO
query. We proceed as follows: if there exists Z ∈ G such that (A,B,Z) is a DDH triple (i.e., R2(A,B,Z) = 1) and
K = T [salt , en1(i, j,X∗1 , X

∗
0 , p̂w i, Z), infob] 6= ⊥, then we let Kb = K (4.7:21-24). Note that this check can be carried

out in O(tDDH ·qr)-time, since there are at most qr entries in T , and for each entry we make one query to DDH (via R).
If Kb is not defined, then we set traffic[X∗1 , X

∗
0 , i, j, salt , info1] to a uniform random element of {0, 1}k (4.7:25-29)

and return it.

The RO simulation works as follows. For queries matching pattern (1, (salt , encoded , info str)), where en0(encoded)

matches (i, j str, X∗1 , X∗0 elemG , sk int, Z elemG), we first check if (X∗1 , X
∗
0 , i, j, salt , info) corresponds to a previous

call to SimKDF. To do so, we unmask the key shares by running A ← X∗1 ·N−sk
1 , and B ← X∗0 ·N−sk

0 and check
if (A,B,Z) is a DDH triple. If so, then we check if derived [X∗1 , X

∗
0 , i, j] = 1 (4.5:39). If so, then because SD is func-

tional, the query must coincide with the session key for (X∗1 , X
∗
0 ). Because RO H was used to compute this in the

reference experiment, we return R1(en0(encoded)) to the caller. Next, we check if K = traffic[X∗1 , X
∗
0 , i, j, salt , info]

is defined. If so, then return it.

Finally, if nothing has yet been returned, then we proceed with the RO simulation in the usual way: check if
T [salt , encoded , info] is defined; if not, then do T [salt , encoded , info]←← {0, 1}k; finally, output T [salt , encoded , info].
Likewise, resource queries matching (2, (const str)) are answered by lazy-evaluating a table U (4.5:47-49). Note that,
prior to any other interaction with the reference environment, the simulator programs U so that Uconst1 = N1 and
Uconst0 = N0, where N1 and N0 are the global parameters in the reference experiment. See procedure Setup defined
on lines 4.5:51-55.

We now proceed with the proof. Eq. (4.4) is derived by a game playing argument in which we exhibit a se-
quence of experiments, beginning with the real experiment Real out

ψ

X/(F,R)(D) and ending with the reference experi-

ment Ref outψ

X̃/(H,DDH )
(D,S), where each experiment is obtained by modifying the code of the previous one. Eq. (4.4)

is obtained by upper-bounding the probability that the distribution of the output changes between each experiment
and the previous one.

Experiment 0. Define procedure G0
F,R so that G0

F,R(D) = Real out
ψ

X/(F,R)(D), but modify the protocol specification
so that procedure KDF sets a flag bad1 ← 1 if, at any point in the experiment, any two sessions pertaining to the
same role (either client or server) compute the same SID (X∗1 , X

∗
0 ). (Note that is the same condition that leads
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SimKDF to output (⊥,⊥) on line 4.7:3.) This change has no affect on the outcome of the experiment, so

Pr
[
G0
F,R(D)

]
= Pr

[
Real out

ψ

X/(F,R)(D)
]
. (4.5)

Revision 0-1. Define procedure G1
F,R from G0

F,R by having KDF immediately halt and output (⊥,⊥,⊥) after bad1

gets set. This occurs only if the SIDs of any two sessions collide. One can show that the probability of an SID collision
is at most the probability of two sessions having the same ephemeral key. Because these keys are independently and
uniformly distributed in Z|G|, a birthday bound yields

Pr
[
G0
F,R(D)

]
− Pr

[
G1
F,R(D)

]
≤ Pr

[
G1
F,R(D) sets bad1

]
≤ (qs + 2qe)

2

2|G| . (4.6)

The factor of 2 in the numerator accounts for the fact that each EXEC-query initiates (and so generates ephemeral
keys for) two sessions.

Revision 1-2. In experiment 2 we replace the real resources (F,R) with the reference resources (H,DDH ). Define
procedure G2

H,DDH from G1
F,R by making the following changes. First, modify the protocol so that it declares

T,U, derived , traffic table. And instead of computing “K ←R1(salt , en1(ikm), info)” (4.4:64), procedure KDF runs
“K ← R1(ikm); (i, j,X∗1 , X

∗
0 , , )← ikm; derived [X∗1 , X

∗
0 , i, j]← 1”. Second, modify the protocol by replacing each

remaining call to R with a call to interface R as defined by the simulator on lines 4.5:33-49. Third, modify the
experiment so that the adversary’s resource queries are answered by R, rather than providing it direct access to the
resources. Fourth, replace (F,R) with (H,DDH ).

Observe that session keys are now being computed by calls to the reference RO H, whereas the traffic keys are
computed by making queries to a simulation of the real ROs F,R. The reference RO takes as input an element of T ,
but the real RO (now being simulated) takes as input an element of ({0, 1}∗)3. That is, the reference RO only takes
in ikm, whereas the real RO takes in the salt salt , encoded = en1(ikm), and an information string (one of info1, info0,
or info). If two sessions compute the same ikm but distinct salts and/or information strings, then the session keys
would have a high probability (close to 1) of being distinct in experiment 1, but would be the same in experiment 2.
However, this situation is impossible: by revision 0-1, there exists no (X∗1 , X

∗
0 ) and distinct (i, j), (i′, j′) ∈ C × S for

which derived [X∗1 , X
∗
0 , i, j] = 1 and derived [X∗1 , X

∗
0 , i
′, j′] = 1. It follows that

Pr
[
G1
F,R(D)

]
= Pr

[
G2
H,DDH (D)

]
. (4.7)

Revision 2-3. Define procedure G3
H,DDH from G2

H,DDH by modifying the protocol specification and environment as
follows. Modify the environment so that it declares p̂w table and modify the SK-operator so that it populates p̂w as
the simulator does (4.5:9-11). Replace procedure KDF with a procedure SimKDF∗ that works just like SimKDF,
except that it takes ikm as input, and we insert the following code between lines 4.7:24 and 25:

1 if Kb = ⊥ then
2 if T [salt , en1(ikm), infob] 6= ⊥ then
3 if p = 1 then bad4 ← 1; Kb ← T [salt , en1(ikm), infob]

4 if p = 0 then bad5 ← 1; Kb ← T [salt , en1(ikm), infob]

That is, before simulating the traffic keys via the traffic table, procedure SimKDF∗ first consults the RO table T
to ensure the simulation does not override a previous RO query. If the query is incident to a passive attack (p = 1),
then the code sets a flag bad4; if the query is incident to an active attack (p = 0), then the code sets a flag bad5.
Whenever one of these conditions is met, SimKDF∗ sets the traffic key to be consistent with the RO simulation.
The substantive change in experiment 3 is that we simulate computation of the traffic keys just as the simulator does,
as long as doing so does not result in an inconsistent view of the RO. This change does not affect the adversary’s
view, so

Pr
[
G2
H,DDH (D)

]
= Pr

[
G3
H,DDH (D)

]
. (4.8)
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Revision 3-4. Define procedureG4
H,DDH from procedureG3

H,DDH by removing the code “Kb ← T [salt , en1(ikm), infob]”
immediately after bad4 gets set. This occurs if the adversary queried RO query (salt , (i, j,X∗1 , X

∗
0 , sk , Z), infob) prior

to a passive attack for which the SID is (X∗1 , X
∗
0 ). Because SD is functional (by Def. 4), and because the parties

ensure that the Hellos correctly encode the key shares (4.4:22 and 42), the adversary cannot cause the parties to
compute the shared secret incorrectly. In particular, both X = X∗1 ·N−sk

1 and Y = X∗0 ·N−sk
0 are independently and

uniformly distributed elements of G, and Z = gxy for x = loggX and y = logg Y . Hence, an efficient adversary D
who sets bad4 with non-negligible probability implies a way to solve the GDH problem for G.

Define GDH-adversary C as follows. On input of (Θ,Φ elemG) and with DDH oracle named DDH, choose n←← [qe]

and run G4
H,DDH(D). On the n-th EXEC-query to the auxiliary interface, compute the key shares as X∗1 = Θ · N sk

1

and X∗0 = Φ · N sk
0 , where sk is the password generated by C as part of its simulation of experiment 4. For the

sessions corresponding to SID (X∗1 , X
∗
0 ), we do not know the shared secret, but this is only used in experiment 4

to check if bad4 or bad5 should be set. We can disregard bad5, since it is only set during an active attack; and in
experiment 4, nothing happens after bad4 gets set. Instead of checking if bad4 should be set, the adversary does as
follows. During the n-th EXEC-query, replace SimKDF∗ with SimKDF as defined in Figure 4.7, except that we
insert some code between lines 4.7:24 and 25. The code checks if there exists Z ∈ G such that DDH(Θ,Φ,Z) = 1

and T [salt , en1(i, j,X∗1 , X
∗
0 , sk i, Z), infob] 6= ⊥. If such a Z exists, then C immediately halts and outputs Z. The

probability that adversary C wins is at least the probability that bad4 gets set during the n-th EXEC-query. Because n
is uniform in [qe], and SimKDF is called twice during an honest run, we conclude that

Pr
[
G3
H,DDH (D)

]
− Pr

[
G4
H,DDH (D)

]
≤ Pr

[
G4
H,DDH (D) sets bad4

]
≤ 2qeAdvgdhG (C) . (4.9)

Revision 4-5. Finally, define procedure G5
H,DDH from G4

H,DDH by removing the code immediately after bad5 gets
set. This occurs if, prior to some SEND-query, the RO table was set at point (salt , en1(i, j,X∗1 , X

∗
0 , sk , Z), infob) for

some b ∈ {0, 1}, where (X∗1 , X
∗
0 ) is the SID computed by the session, i and j are the client and server, salt and infob

are computed as in SimKDF∗, and Z is the shared secret. Having reached this point in the code, we know that the
check on line 4.7:22-23 failed. This implies that sk was never previously revealed to the adversary (p̂w i = ⊥). Because
the SID (X∗1 , X

∗
0 ) is unique to the session (and its partner, if it exists), the password sk determines a unique point in

the RO table that would be set for a given session (or its partner). Because the password generator is uniform, the
probability of bad5 getting set by any one SEND-query is at most 2/|P|. Summing over all such queries yields

Pr
[
G4
H,DDH (D)

]
− Pr

[
G5
H,DDH (D)

]
≤ Pr

[
G5
H,DDH (D) sets bad5

]
≤ 2qs
|P| . (4.10)

Experiment 5. Noting that SimKDF∗ as defined in experiment 5 is the same as SimKDF as defined in Figure 4.7,
experiment 5 is functionally equivalent to the reference experiment. We conclude that

Pr
[
G5
H,DDH (D)

]
= Pr

[
Ref outψ

X̃/(H,DDH )(D,S)
]
. (4.11)

Resources. The runtime of S includes the runtime of SD , since it uses this algorithm as a sub-routine. On
any given call, it invokes SD at most a constant number of times. Each call to SD results in at most qr queries
to the RO, each of which can be evaluated in time O(tDDH ). Procedure SimKDF is called at most once, each
call requiring O(qr · tDDH )-time to evaluate. Finally, each call to X or R can be evaluated in constant time. The
runtime of S is therefore O(tA + qr · tDDH ). Each call to its 2-interface results in at most 1 SEND-query, 1 EXEC-query,
and 2qr DDH -queries. Each call to its 3-interface results in at most 1 H-query and 1 DDH -query. The runtime of B is
therefore O(tA(tA+qr ·tDDH )), and B makes at most qs SEND-queries, qe EXEC-queries, 2qr(qs+qe)+qr = O(qr(qs+qe))

DDH -queries, and qr H-queries.
Adversary C runs M in experiment 4 until a certain condition is meant. For each of M ’s aux./resource queries,

it does the same work as S: in particular, SEND- and EXEC-queries are O(tA + qr · tDDH )-time and resource queries
are O(tDDH )-time. Its runtime is therefore O((qs + qe)(tA + qr · tDDH )) = O(tA(tA + qr · tDDH )), since qs + qe ≤ tA.
Finally, it too makes at most O(qr(qs + qe)) DDH -queries. �

Remark 5. Let us briefly comment on the implications of using a DDH oracle in the resources for the reference
experiment. Any reduction to the reference experiment (i.e., any assumption used to bound B’s advantage) must
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provide the attacker with this capability. In particular, suppose we find a reduction from the CDH assumption to
the Gψ-security of X̃ for some game G. Then the stronger GDH assumption would be required in order to use the
reduction to prove Gψ-security of X via Theorem 3. (Likewise for DLP and Gap DLP [65].)

4.3 Discussion
In this chapter we considered the problem of protocol translation, where the real system is obtained from the
reference system by changing the protocol’s specification. The systems in question are eCK(Π) and eCK(Π̃)

respectively, where Π is some “real” AKE protocol, Π̃ is some “reference” AKE protocol, and eCK specifies the
execution environment for the eCK security model [99]. The translation framework allows us to argue that Π is at
least as secure as Π̃ by proving that the execution of Π is indifferentiable from the execution of Π̃ (in the environment
specified by eCK). In particular, our analysis of SPAKE2 shows that its usage in TLS is at least as secure as SPAKE2
itself, with only a modest loss in concrete security. Moreover, our result (Theorem 3) “lifts” all existing game-based
treatments of SPAKE2 [4, 20, 1], in the sense that the security models in these works can be captured as games in
our framework.

However, there is a another security consideration for our extension that Theorem 3 does not explicitly address.
Although we have established that the TLS extension meets its intended security goal (i.e., that of SPAKE2), it
remains to be seen whether the extension’s availability leads to a cross protocol attack against TLS. This seems
unlikely, given that the client and server fail closed if the extension is not negotiated; but our analysis does not offer
any formal evidence either way.

In the next chapter, we consider an attack model that might help to shed light on the security impact of extensions.
Chapter 5 considers the “environment translation” problem, in which the scheme stays the same but its execution
environment changes from the reference system to the real system. In particular, we study the problem of designing
cryptographic APIs that securely expose secret keys for use in multiple applications. At the end of the next chapter,
we will discuss how the same formal approach could be used to reason about extensibility in complex protocols, such
as TLS.
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Chapter 5

Environment Translation

The principle of key separation, or ensuring that distinct cryptographic functionalities use distinct keys, is a widely
accepted tenet of applied cryptography. It appears to be difficult to follow, however, as there are many instances
of key reuse in deployed cryptosystems, some having significant impact on the security of applications. There are
a number of practical matters that lead to key reuse. First, operational requirements of the system often demand
some degree of it. For example, it is common to use a signing key deployed for TLS [123] in other protocols, as this
is permitted by certificate authorities and avoids the cost of certifying a distinct key for each protocol. But doing
so has side-effects that must be addressed in the design of these protocols, as well as the API that exposes the key
to applications [40]. Second, it is often not clear what constitutes a “distinct functionality”. Intel’s Trusted Platform
Module (TPM) standard [145] supports a suite of protocols for remote attestation that all use the same key stored
on chip. The TPM exposes a core set of operations involving this key via an API that applications make calls to
in order to implement attestation schemes. But the requirement to support so many protocols has lead to a flexible
API with subtle vulnerabilities [6, 52].

Prior work sheds light on when key reuse is safe among specific sets of cryptographic primitives. The notion of
joint security [82], first discussed in §2.4.2, captures the security of a target cryptosystem (i.e., a digital signature
scheme) in the presence of an oracle that exposes a related secret key operation (i.e., the decryption operation of a
public-key encryption scheme). Many widely used primitives are jointly secure, including RSA-PSS/OAEP [82] and
Schnorr signatures/hybrid encryption [65], in the ROM. (Joint security is also known to hold for signing/encryption
under more general conditions [115, 25], in the standard model.) Acar et al. [5] address the related problem of agility,
where the goal is to identify multiple instantiations of a particular primitive (e.g., sets of AEAD schemes, PRFs,
or signature schemes) that can securely use the same key material. But the range of potential key-reuse attacks
goes well beyond what these works cover: attack vectors sometimes break the intended abstraction boundary of the
scheme by exposing lower level operations [51, 6], or involve unforeseen protocol interactions at a higher level of
abstraction [88, 40].

The goal of this chapter is to devise a security model that accounts for the full range of key reuse observed in
the wild. To this end, we propose to surface the API as a first class security object. For our purposes, the API is
the component of a system that exposes to applications a fixed set of operations involving one or more secret keys.
APIs are often the root-of-trust of applications: TPM, Intel’s Software Guard Extensions (SGX), hardware security
modules (HSMs), and even chip-and-pin credit cards all provide cryptographic APIs that aim to be trustworthy-by-
design. But pressure to meet operational requirements, while exporting interfaces that are suitable for a variety of
applications, often leads to vulnerabilities (cf. §1.4). An analogous situation arises in the development of software
that uses a cryptographic library: software engineers tend to trust that any use case permitted by an API is secure,
without fully grasping its side-effects [110]; and this can lead to vulnerable code [7, 111].

In the framework of Chapter 2, we elucidate a condition under which a cryptographic API is provably safe for
use among multiple applications. Called context separability, this property is used to relate the security of a target
application in its “reference” environment, where we assume the keys are used only for the target application, to its
“real” environment in which keys might be used by other applications. Cross protocol attacks involving these other
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applications are modeled conservatively by allowing the adversary direct access to the same API used by the target
application. We formalize this exposed interface attack setting in §5.1.

Our notion of context separability is inspired by a design pattern already present in a variety of cryptographic
standards. Loosely, this property refers to a cryptographic binding of secret key operations to the application in
which they are used, ensuring that operations performed in the context of one application cannot be used to attack
another. We provide a formal treatment of two standards, both of which provide some degree of context separability.
The first is the IETF-standardized version of the EdDSA signature scheme [87] that takes as input an explicit context
string. The second is the Noise protocol framework developed by Trevor Perrin [120], which specifies a set of Diffie-
Hellman protocols in which key derivation depends on a string that uniquely identifies the protocol. In §5.2 and §5.3
respectively, we consider the degree to which these mechanisms ensure secure key reuse.

Related Work. In their provable security treatment of the SSH protocol [103], Bergsma et al. [36] formalize a
variant of the ACCE model [85] that addresses the common practice of reusing long-term secrets among many SSH
ciphersuites. Their main result is a composition theorem that relates the “multiciphersuite-ACCE” security of a
protocol to the ACCE security of each ciphersuite in isolation, but in the presence of an “auxiliary oracle” that allows
the adversary to obtain signatures under long-term secret keys used in the experiment (cf. [36, Theorem 2]). Security
in the presence of such an oracle is generalized by our notion of security under exposed interface attack.

Concurrent to our work is the formal treatment of domain separation of Bellare et al. [22] that addresses the
common practice of instantiating multiple, independent random oracles (ROs) using a single hash function. For
example, while a security proof might involve three functions H1, H2, and H3 modeled as independent ROs, the
scheme’s implementation might instantiate these as H1(x) = H(str(1) ‖x), H2(x) = H(str(2) ‖x), and H3(x) =

H(str(3) ‖x), where str(·) encodes its input as a fixed-length string and H is a concrete hash function such as SHA-2.
The idea is that prefixing the input of H with str(i) is as good as having three independent ROs. And while this
seems “obviously true” here, there are other domain-separation schemes which could lead to an attack (in the ROM
for H).

Bellare et al. apply the indifferentiability framework in order to distinguish “safe” schemes from those that might
lead to attacks. As we will see, context separability and secure “oracle cloning”, as they call it, are achieved in much
the same way: just as one prefixes the input to an RO with the input’s “domain” (i.e., the integer i), we will prefix
the input of an RO with the “context” in which a secret key operation is performed. We will see that domain (i.e.,
context) separation is necessary in our setting, but proving security under exposed interface attack is more involved.

Preliminary work. This chapter is based on a preliminary work by the author that appears in the proceedings of
CRYPTO 2019 [117]. There are major differences between the definitions and results presented here and those that
appear in the paper; see Remark 7.

5.1 Context-Separable APIs

For our purposes in this chapter, the API is the component of a system that exposes secret keys for use in cryptographic
applications. We formalize APIs as objects (§2.1) that, at a minimum, specify how keys are generated.

Definition 21 (API). An API is a halting object Γ that exports a stateless, (GEN)-(pk , sk any)-operator, which we
call the key generator. We refer to pk as the public key and to sk as the secret key. For symmetric key cryptosystems,
the public key is empty (i.e., pk = ⊥). �

Given an API Γ and a target application, our goal is to measure the application’s security when Γ is used for
additional applications. We specify a real and reference execution environment for Γ , whose indifferentiability will
imply that security holds even under exposed interface attack. Refer to specifications API and ÃPI defined in
Figure 5.1. System X̃ = ÃPI(Γ ) provides access to Γ as it is used by the target application. The main interface of X̃
provides the caller (i.e., the application) access to three operators. The first is the INIT-operator, which generates and
stores a key pair. The second is the SK-operator, which exposes the API (i.e., Γsk (·)) for the secret key sk . Finally,
the RO-operator provides the application access to the external resources of the experiment. The auxiliary interface
of X̃ makes the public key pk available to the caller (i.e., the adversary). System X = API(Γ ), also specified in

74



spec ÃPI: //R points to resources API
1 var Γ object, pk , sk any
2 op (SETUP): Γ (SETUP)
3 //Main interface (used by the game)
4 op ,R (1, INIT): (pk , sk)← ΓR(GEN); ret pk
5 op ,R (1, SK, x any): ret ΓRsk (x)
6 op ,R (1, RO, x any): ret R(x)
7 //Aux. interface (used by the adversary)
8 op ,R (2, PK): ret pk

9 op ,R (2, SK, x any): ret ΓRsk (x)
A

Γ

~R

G
1

1

2

1

X = API(Γ )

x ∈ C
/

x 6∈ C
/

Figure 5.1: Left: Specs API and ÃPI used to define context separability. Right: Who may call whom in an
exposed-Γ attack against G, where ~R denotes the resources of the experiment.

Figure 5.1, is much the same as X̃, except that the auxiliary interface also provides the caller (i.e., the adversary)
with access to the API.

Exposed Interface Attacks. Our goal is to devise a formal model for a target application in which the adversary
may interact directly with the underlying API. As usual, the security experiment is defined by constructing a world
W = Wo(G,X), where G is a game and X is a system (cf. §2.4). In this chapter, the system X will define
the execution environment for the API, and the game G will subsume the target application, in addition to the
application’s intended security goal. This shifts the abstraction boundary relative to Chapters 3 and 4, where the
application under attack was subsumed by the system. Here we are less interested in what the application is than
how it interacts with the API, hence the shift. In world W = Wo(G,X), where X = API(Γ ), both the adversary A
and target application (i.e., the game G) share access to Γ . We refer to the execution of A in the MAIN experiment
for W as an exposed-Γ attack against (the application codified by) G. Figure 5.1 illustrates which objects have access
to which interfaces in this experiment.

This setting conservatively models cross protocol attacks against the target application that result from key reuse.
Allowing the adversary unfettered access to the API could lead to attacks that are far more powerful than what is
realistic. As an example, suppose the target application codified by G is TLS [123]: if the API provides the adversary
with a signing oracle, say for a server, then it is trivial for the adversary to impersonate this server to a client. This
is inevitable when the behavior of the “other applications” is unspecified, as it is in our formal model. But in practice
we will usually know something about the behavior of these other applications (formalized by the exposed interface
attack) that could help to salvage security.

In particular, suppose we know that the set of API calls made by the target application is disjoint from the set
of API calls made from all other applications (modeled by the adversary’s exposed interface attack). More precisely,
for a given game G, suppose there is a set C such that each of G’s queries to the system X is a member of C. In fact,
this is true for our TLS example: whenever a signature is produced in TLS, the message that is signed is prefixed
by a context string ctx that uniquely identifies the protocol (i.e., TLS 1.3) and the role of the signer (i.e., server). So,
if the API is a signing interface for the server, then C is a subset of {msg ∈ {0, 1}∗ : ctx � msg}. This provides a
degree of defense against cross protocol attacks (cf. [123, §4.4.3]), since it is unlikely that another application would
inadvertently sign messages with the same prefix. If we assume this is the case—that is, suppose that none of the
adversary’s queries to X coincides with C—then we may be able to prove that TLS is secure against cross protocol
attacks involving the server’s signing key. (Or the client’s, for that matter.)

Context Separability. So that proving security under exposed interface attack is feasible, we shall assume the
existence of a set C that partitions the set of queries made by the game from those made by the adversary. (This is
illustrated in Figure 5.1.) In essence, this set formalizes what is known about the real-world behavior of applications
that share access to the API: in turn, we will treat it as a parameter of our security experiment that is specific to
the API being used. To formalize this, we define a transcript predicate φ̂Csep that deems an attack valid iff each
main-interface query is a member of C and every aux.-interface query is not. This leads immediately to our notion of
context separability.
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Definition 22 (Predicate φ̂Csep and C-separability). Let C be a computable set and define transcript predicate φ̂Csep so
that φ̂Csep(tx ) = 1 iff tx i ∼ (1, (op str, in any), . . .) ⇒ (op, in) ∈ C and tx i ∼ (2, (SK, in any), . . .) ⇒ (SK, in) 6∈ C for
all 1 ≤ i ≤ |tx |. Let Γ be an API, let X = API(Γ ), and let X̃ = ÃPI(Γ ). Formally, C-separability is a measure of the
SR-INDIFFφ̂

C
sep advantage of an adversary in differentiating X from X̃ relative to a simulator (Def. 3). Informally,

we say that Γ is C-separable if X is φ̂Csep-indifferentiable from X̃; and we say that Γ is context separable if there is a
set C such that φ̂Csep is efficiently computable (Def. 2) and Γ is C-separable. �

Remark 6. The set C is consists of pairs (op, in), where op denotes one of the system’s operators and in denotes the
input to the operator. This means that, in addition to SK-operator queries, set C might consist of RO-operator queries
that are forwarded to the shared resources (5.1:6). �

Our goal is to use an API’s context separability to argue that a target application is secure under exposed interface
attack. To do so, we will need a variant of the preservation lemma (Lemma 2) for which the class of games is restricted
to those whose API queries are disjoint from the adversary’s.

Definition 23 (Predicate φCsep and C-regularity). Let C be a computable set and define transcript predicate φCsep so
that φCsep(tx ) = 1 iff tx i ∼ (2, (SK, in any), . . .)⇒ (SK, in) 6∈ C for all 1 ≤ i ≤ |tx |. Let X be a system, G be a game,
A be an adversary, and ~R be resources. Run A in the MAINφCsep experiment for Wo(G,X)/~R and let Q denote the
subset of G’s queries to X that match (op str, in any). We say that G is C-regular if for every such X,A, ~R it holds
that Q ⊆ C with probability 1. Informally, we say that G is context regular if there exists a set C for which φCsep is
efficiently computable and G is C-regular. �

For context-regular games we have the following lemma which, together with the lifting lemma of Chapter 2, lets
us use an API’s context separability in order to argue the security of a given application under exposed interface
attack.

Lemma 4 (Preservation for regular games). Let C be a set, let υ = φ̂Csep, and let τ = φCsep. Let X,Y be systems
and ~R, ~Q be resources. For every (g1, )-query, C-regular game G, tA-time, (a1, a2, ar)-query, n.d. adversary A, and
simulator S, there exists an n.d. adversary B such that

Advsr-indiff
τ

W/~R,V/~Q
(A,S) ≤ Advsr-indiff

υ

X/~R,Y/~Q
(B,S) ,

where W = Wo(G,X), V = Wo(G,Y ), and B is O(tA)-time and (a1g1, a2, ar)-query.

Proof. We construct adversary B just as we did in Lemma 2. By the C-regularity of G, υ-validity of the transcript
holds precisely when τ -validity of the transcript holds. Thus, B’s differentiating advantage is precisely the same
as A’s. �

Remark 7. Our application of indifferentiability to security under exposed interface attack is comparable to PS19’s
GAP1 security notion (cf. [117, Def. 5]), but the notions differ in a few important respects. First and foremost, GAP1
is defined in both the standard model and the random oracle model (ROM). In the standard model, GAP1 is a special
case of φCsep-indifferentiability of Wo(G,API(Γ )) from Wo(G, ÃPI(Γ )) for a particular set C and class of APIs Γ
and games G. In the ROM, however, their notion is significantly stronger. The relative strength comes from the fact
that, in our reference experiment (Figure 2.3), access to the RO (i.e., the resources) is mediated by the simulator;
but in the GAP1 experiment, the adversary has direct access to the RO. This affords the simulator less control over
the adversary’s view of the experiment, resulting in a stronger security property. It is also strictly stronger: as we
show in §5.3, we are able to overcome one of their negative results in our setting (cf. [117, Theorem 4]). �

5.2 Case Study: The EdDSA Signature Algorithm
Our first real-world application of context separability is the IETF’s standardized version of EdDSA [87], a digital
signature scheme originally designed by Bernstein et al. [38]. Unlike more common signatures, like RSA-PSS or
ECDSA, the standard admits variants that have an explicit context string, allowing us to easily formalize and prove
context separability for them. It specifies two concrete instantiations, whose names indicate the underlying group:
Ed25519 and Ed448. Specification EdDSAb,c,`

G in Figure 5.2 defines the generic EdDSA algorithm: a concrete scheme
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spec EdDSAb,c,`
G : //R points to resources

1 var cl , vr , ph, int , en object
2 op ,R (GEN):
3 K ←← {0, 1}b; s← cl(R1(K)[:b])
4 ret (gs, (gs,K))
5 op ,R ((PK elemG , str),
6 VERIFY, ctx ,msg str, (R elemG , x int)):
7 if |ctx | > ` then ret ⊥
8 C ← vr(ctx ); Y ← phR(msg)
9 t← int(R1(C ‖ en1(R) ‖ en1(PK ) ‖Y ))

10 ret gx2
c

= R2c · PK t2c

11 op ,R (( elemG ,K str),
12 SIGN, ctx ,msg str):
13 if |ctx | > ` then ret ⊥
14 C ← vr(ctx ); Y ← phR(msg)
15 W ←R1(K)[b:]
16 s← cl(R1(K)[:b])
17 r ← int(R1(C ‖W ‖Y ))
18 t ← int(R1(C ‖ en1(gr) ‖ en1(gs) ‖Y ))
19 x← r + st (mod |G|)
20 ret (gr, x)

Figure 5.2: Spec EdDSAb,c,`
G for integers b, c, ` ≥ 0 and group G = (G, ·) with generator g, where |G| ≤ 2b−1 and G is

a represented set. Object cl computes a function from {0, 1}b to Z|G|; object int computes a bijection from {0, 1}2b
to Z22b ; object en is a G-encoder (Def. 18); object vr computes a function from {0, 1}≤` to {0, 1}`; and ph computes
a function from {0, 1}∗ to {0, 1}∗. The first resource in the experiment is an object that computes (an RO for) a
function from {0, 1}∗ to {0, 1}2b.

is instantiated by selecting the group G = (G, ·), integers b, c, ` ≥ 0, and functional objects cl , vr , ph, int , and en.
The first resource of the experiment (named R1) should be instantiated with a hash function with range {0, 1}2b.

Let us explain the parameters. The group is determined by a prime number p > 2, parameters for a (twisted)
Edwards curve E (see [38, Section 2]), and a generator g of a prime order subgroup of E(Fp), where E(Fp) denotes
the group of points (x, y) ∈ Fp × Fp that lie on the curve E, and Fp denotes the finite field of order p. Define b so
that 2b−1 > p and define c so that #E(Fp) = n2c (i.e., 2c is the cofactor of G). This choice of b makes it possible
to encode signatures with 2b bits, while the choice of c is intended to mitigate small subgroup attacks [101]. The
“clamping” function cl is similarly tailored to the underlying group: for Ed25519 and its variants, this function clears
the first 3 bits, sets the second to last bit, and clears the last bit. This ensures that s = 2254 + 8x for a uniform
random x ∈ Z2251 . Finally, the algorithm variant is determined by the functions vr and ph. For example, the most
common Ed25519 variant is obtained by letting ` = 0 so that vr(ctx ) = ε for all ctx and letting ph(msg) = msg

for all msg . However, the standard also specifies variants that permit context (Ed25519ctx) and pre-hashing of the
message (Ed25519ph). We allow ph to depend on the experiment’s resources so that phR(msg) can be evaluated as
R1(msg), as it is for the pre-hashed variants.

Security. EdDSA is a relatively modern signature scheme, designed from the ground-up for speed and to resist a
variety of sophisticated attacks. What we aim to prove for EdDSA is relatively simple: that for any string α, its
signing API is Cα-separable, where

Cα :=
{

(op, (op′, ctx ,msg)) ∈ {0, 1}∗ × ({0, 1}∗)3 : op = SK ∧ op′ = SIGN ∧ ctx = α
}
. (5.1)

In English, Cα is the set of signing queries that use α as the context string. We refer to α as the game context, as it
is the context used exclusively by the game (and is not used by the adversary).

EdDSA specifies an encoding of curve points as bit strings; our argument requires this encoding to be invertible.
Namely, object en must be a G-encoder and G must be represented in the sense of Def. 18. We also require vr to be
collision resistant in the following sense.

Definition 24 (CR security). Let F be an object that computes a function. A collider for F is a halting ob-
ject that exports a ( )-(elemX , elemX )-operator, where X is the domain of the function computed by F . Let
AdvcrF (A) := Pr

[
(x, x′)← A( ) : (x 6= x′) ∧ (F (x) = F (x′))

]
be the CR advantage of collider A in attacking F . �

Theorem 4. Fix G = (G, ·), b, c, `, cl , vr , ph, int, en, and Γ = EdDSAb,c,`
G (cl , vr , ph, int , en) as specified in

Figure 5.2. Fix α ∈ {0, 1}≤`, let C = Cα, and let τ = φCsep. Let X = API(Γ ) and X̃ = ÃPI(Γ ). Suppose that
ph is 1-query and that |G| ≤ 2b. Then for every (g1, )-query, C-regular game G and tA-time, (q1, q2, qr)-query,
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n.d. adversary A there exist an n.d. adversary B and collider C such that

AdvG
τ

X/H(A) ≤ AdvG
τ

X̃/H(B) + Advcrvr (C) +
7(q2)2 + 5g1q1qr + 3q2qr + qr

|G| ,

where B is O((tA)2)-time and (q1, q2, q2+qr)-query, C is O(tA)-time, and H is an RO from {0, 1}∗ to {0, 1}2b.

Proof. Let S = Sim( ) be as specified in Figure 5.3. This object simulates EdDSA signatures by programming the
RO much like the simulator for the proof of Theorem 1. Each of its SET-queries (cf. 5.3:8) uses a source (specified on
lines 5.3:13-20) that is (log |G|, 2b)-min-entropy, since x is sampled uniformly from Z|G| and T is sampled uniformly
from {0, 1}2b. By assumption, each operator defined by G makes at most g1 queries to X. Each such query results in
at most 5 distinct RO queries, since the SIGN-operator makes at most four RO queries and evaluates ph at most once.
Hence, an effective query limit of H is (Q̂+q2, 0), where Q̂ = 5g1q1 +5q2 +qr, since the number of RO queries will not
exceed q̂. Let P be an RO from {0, 1}∗ to {0, 1}2b with query limit (Q̂, q2). By Lemma 1 there exist a O(tA)-time,
O(q1+1, g2, gr)-query n.d. adversary D′ and a O(tAtS)-time, O(q1, q2, q2+qr)-query n.d. adversary B for which

Advmainτ
W/H (A) ≤ Advmainτ

W̃/H (B) + Advsr-indiff
τ

W/H,W̃/P (D′, S) +
q2(q2 + Q̂)

|G| , (5.2)

where tS is the runtime of S, W = Wo(G,X), and W̃ = Wo(G, X̃). Let υ = φ̂Csep. By Lemma 4 there exists a
O(tA)-time, ((q1+1)g1, q2, qr)-query n.d. adversary D for which

Advsr-indiff
τ

W/H,W̃/P (D′, S) ≤ Advsr-indiff
υ

X/H,X̃/P (D,S) . (5.3)

In the remainder we exhibit a O(tA)-time adversary C for which

Advsr-indiff
υ

X/H,X̃/P (D,S) ≤ Advcrvr (C) +
qr + 2qrq2 + (q2)2

|G| . (5.4)

Combining equations (5.2), (5.3) and (5.4) and simplifying yields the desired bound.
The proof is by a game-playing argument in which we make the following assumptions. The first is that each of D’s

auxiliary interface queries are distinct. This is without loss because all of the responding operators are deterministic
and stateless. The second is that D is υ-respecting, meaning that υ(tx ) = 1 holds at the end of the experiment. This
assumption is without loss because υ is efficiently computable and G is C-regular.

Experiment 0. We begin with a system X0 = X0( ) whose spec, defined in Figure 5.3, was obtained from the real
system X by replacing calls to Γ in the definition ofAPI with the responding Γ -operator. For example, the call to Γ ’s
GEN-operator on line 5.1:4 was replaced with the operator defined on lines 5.2:2-4. In addition, the SETUP-operator
initializes a random, b-bit string W . Define procedure G0 so that G0

H(D) = Real out
υ

X0/H
(D). Since none of these

changes affect the semantics of the experiment,

Pr
[
Real out

υ

X/H(D)
]

= Pr
[
G0
H(D)

]
. (5.5)

Revision 0-1. Let X1 = X1( ) as specified in Figure 5.3 and let G1
H(D) = Real out

υ

X1/H
(D). This system is identical

to X0 until a signing query is made via the aux. interface for which vr(α) = vr(ctx ), where ctx is the context string
incident to the query. If this occurs, then the revised operator immediately halts and returns ⊥ (5.3:44). We know
that ctx 6= α because D is υ-respecting by assumption. Therefore, this condition implies a collision under vr with
access to an RO for H. By the fundamental lemma of game playing, we can construct a O(tA)-time collider C for
which

Pr
[
G0
H(D)

]
− Pr

[
G1
H(D)

]
≤ Advcrvr (C) . (5.6)

The collider simply runs G1
H(D) until the condition on line 5.3:44 is met and halts with output (α, ctx ). If D halts

before this condition is met, then C gives up and outputs (ε, ε).

Revision 1-2. The remaining revisions are to the SK-operator exported by the auxiliary interface. Let X2 = X2( )

as specified in Figure 5.3 and let G2
H(D) = Real out

υ

X2/H
(D). This system changes the way the string W is computed.
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spec Sim: //X points to X̃2; R to resources

1 var PK elemG
2 opX , (2, PK): ret X (PK)
3 opX ,R (2, SK, (SIGN, ctx ,msg str)):
4 PK ← X (PK)
5 if PK = ⊥ ∨ |ctx | > ` then ret ⊥
6 if vr(α) = vr(ctx ) then ret ⊥
7 C ← vr(ctx ); Y ← phR(msg)
8 M ← Src(X (PK), C, Y )
9 (( , T ), x)←R1(SET,M); t← int(T )

10 ret (gx/PK t, x)
11 op ,R (3, (1, ξ str)):
12 ret R1(ξ)

spec Src:
13 var PK elemG , C, Y str
14 op ( ):
15 x←← Z|G|
16 T ←← {0, 1}2b
17 t← int(T )
18 R← gx/PK t

19 ξ ← C ‖ en1(R) ‖ en1(PK ) ‖Y
20 ret ((ξ, T ), x)

spec X0: //R points to resources (H, ) X1

21 var PK elemG , K,W str
22 op (SETUP): W ←← {0, 1}b
23 op ,R (1, INIT):
24 K ←← {0, 1}b; s← cl(R1(K)[:b])
25 PK ← gs; ret PK
26 op ,R (1, RO, x any): ret R(x)
27 op ,R (2, PK): ret PK
28 op ,R (i int, SK, (VERIFY, ctx ,msg str, (R elemG , x int))):
29 if |ctx | > ` then ret ⊥
30 C ← vr(ctx ); Y ← phR(msg)
31 t← int(R1(C ‖ en1(R) ‖ en1(PK ) ‖Y ))

32 ret gx2
c

= R2c · PK t2c

33 op ,R (1, SK, (SIGN, ctx ,msg str)):
34 if |ctx | > ` then ret ⊥
35 C ← vr(ctx ); Y ← phR(msg)
36 W ←R1(K)[b:]
37 r ← int(R1(C ‖W ‖Y ))
38 s← cl(R1(K)[:b])
39 t ← int(R1(C ‖ en1(gr) ‖ en1(gs) ‖Y ))
40 x← r + st (mod |G|)
41 ret (gr, x)
42 op ,R (2, SK, (SIGN, ctx ,msg str)):
43 if |ctx | > ` then ret ⊥
44 if vr(α) = vr(ctx ) then ret ⊥
45 C ← vr(ctx ); Y ← phR(msg)
46 W ←R1(K)[b:]
47 r ← int(R1(C ‖W ‖Y ))
48 s← cl(R1(K)[:b])
49 t ← int(R1(C ‖ en1(gr) ‖ en1(gs) ‖Y ))
50 x← r + st (mod |G|)
51 ret (gr, x)

52 op ,R (2, SK, (SIGN, ctx ,msg str)): X1 X2

53 if |ctx | > ` then ret ⊥
54 if vr(α) = vr(ctx ) then ret ⊥
55 C ← vr(ctx ); Y ← phR(msg)

56 W ← R1(K)[b:] W ←W

57 r ← int(R1(C ‖W ‖Y ))
58 s← cl(R1(K)[:b])
59 t ← int(R1(C ‖ en1(gr) ‖ en1(gs) ‖Y ))
60 x← r + st (mod |G|)
61 ret (gr, x)

62 op ,R (2, SK, (SIGN, ctx ,msg str)): X2 X3

63 if |ctx | > ` then ret ⊥
64 if vr(α) = vr(ctx ) then ret ⊥
65 C ← vr(ctx ); Y ← phR(msg)

66 W ←W ; r ← int(R1(C ‖W ‖Y ))

67 r ←← Z22b ; s← cl(R1(K)[:b])
68 t ← int(R1(C ‖ en1(gr) ‖ en1(gs) ‖Y ))
69 x← r + st (mod |G|)
70 ret (gr, x)

71 op ,R (2, SK, (SIGN, ctx ,msg str)): X3 X4

72 if |ctx | > ` then ret ⊥
73 if vr(α) = vr(ctx ) then ret ⊥
74 C ← vr(ctx ); Y ← phR(msg)

75 r ←← Z22b

76 s← cl(R1(K)[:b])
77 t ← int(R1(C ‖ en1(gr) ‖ en1(gs) ‖Y ))
78 x← r + st (mod |G|) ret (gr, x)

79 M ← Src(PK , C, Y )
80 ( , (R, x))←R1(SET,M); ret (R, x)

Figure 5.3: Specifications for the proof of Theorem 4. Top: Specs Sim and Src. Bottom: Specs X0, X1, X2, X3,
and X4.
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This randomizer, as we refer to it in the remainder, is used to generate the integer r used in the signature: in X1,
the randomizer is generated by an RO query on input K; in X2, the randomizer is instead set to the value of W
generated during setup. The consequence of this revision is that the randomizer used by the main interface and the
auxiliary interface are independently and identically distributed and therefore distinct with high probability. But by
revision 0-1, the `-bit prefix C of the RO query used by the auxiliary interface to generate r is distinct from that of
the main interface. Therefore, as long as the randomizer used by the main interface is unknown to the adversary,
this revision does not change the distribution of signatures computed by the auxiliary interface. This is true as long
as the adversary does not correctly “guess” the input K to the RO used to derive the randomizer experiment 1. In
particular, it can be shown that

Pr
[
G1
H(D)

]
− Pr

[
G2
H(D)

]
≤ qr/2b , (5.7)

since K is a uniform random, b-bit string.

Revision 2-3. Let X3 = X3( ) as specified in Figure 5.3 and let G3
H(D) = Real out

υ

X3/H
(D). This revision changes

the manner in which r is computed: in X2, the value of r is the output of an RO query on input of the encoded
context C, the randomizer W , and the pre-hashed message Y ; in X3, the value of r is chosen uniformly from Z22b .
Each query to the auxiliary interface matching (SK, (SIGN, , str)) is distinct by assumption. Moreover, since int

is bijective, the randomizer has the same distribution in both systems. Hence, the distribution of X3’s outputs is
identical to the distribution of X2’s outputs as long as none of D’s RO queries coincides with a SIGN-operator query
to its auxiliary interface. Since W is a uniform random, b-bit string, we have

Pr
[
G2
H(D)

]
− Pr

[
G3
H(D)

]
≤ qrq2/2b . (5.8)

Revision 3-4. Let X4 = X4( ) as specified in Figure 5.3 and let G4
P (D) = Real out

υ

X4/P
(D). In X3, the signature is

equal to (gr, x), where x = r+st and t = R1(C ‖ en1(gr) ‖ en1(gs) ‖Y ). InX4, the signature is (R, x) for R = gx/PK t,
where x is chosen uniformly from Z|G| and t = int(T ) for uniformly chosen T from from {0, 1}2b; and, via a call to
source M = Src(PK , C, Y ), the RO is programmed so that a subsequent RO query on C ‖ en1(R) ‖ en1(PK ) ‖Y
returns T . The revised system is identical to the original until a query to the SIGN-operator of the auxiliary interface
overwrites a previously set point.

Consider the probability that the output of source M matches ((ξ, str), any) for some string ξ. Source M
outputs ((C ‖ en1(R) ‖ en1(PK ) ‖Y, T ), x) where R = gx/PK t and t = int(T ) for some PK ∈ G, T ∈ {0, 1}2b, and
x ∈ Z|G|. Because en is an encoder, the function en1(·) is injective. Since x is chosen uniform randomly, the
probability that ξ encodes gx/PK t is at most 1/|G|. In turn, the probability that a call to the auxiliary interface
results in a point in the RO being overwritten is at most 1/|G|. By revision 0-1, it is only possible to overwrite points
set by a resource query or a previous auxiliary-interface query. Hence, the probability of any one auxiliary interface
query overwriting a point in the RO is at most (qr + q2)/|G|. Summing over all auxiliary-interface queries yields

Pr
[
G3
H(D)

]
− Pr

[
G4
P (D)

]
≤ q2(qr + q2)/|G| . (5.9)

Experiment 4. The execution of adversary D in the real experiment for X4/P is identical to the execution of D
and simulator S in the reference experiment for X̃/P . It follows that

Pr
[
G4
P (D)

]
= Pr

[
Ref outυ

X̃/P (D,S)
]
. (5.10)

Combining each of the above transitions yields

Advsr-indiff
υ

X/H,X̃/P (D,S) ≤ Advcrvr (C) +
qr
2b

+
qrq2
2b

+
q2(qr + q2)

|G| (5.11)

≤ Advcrvr (C) +
qr
|G| +

qrq2
|G| +

q2(qr + q2)

|G| (5.12)

= Advcrvr (C) +
qr + 2qrq2 + (q2)2

|G| , (5.13)

where Eq. (5.12) follows from the assumption that |G| ≤ 2b. To complete the proof, note that tS = O(tA) because
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the simulator’s runtime is linear in the length of A’s auxiliary-interface queries. We conclude that B’s runtime is
O((tA)2). Finally, adversary B is (q1, q2, qr + q2)-query since it makes precisely q1 main-interface queries, at most q2
aux.-interface queries, and at most qr + q2 RO queries. �

Remark 8. Let us address the assumptions made in Theorem 4. First, note that for Ed25519 and Ed448 and their
variants, the order of the group G is less than 2b [87]. Second, for the contextualized variants Ed25519ctx and
Ed448ctx, the function computed by vr is injective, and so the CR-advantage term is 0. Third, for the pre-hashed
variants Ed25519ph and Ed448ph, the object ph makes exactly one query to R1, but the other variants make no such
query. �

5.3 Case Study: Key Reuse Among DH Protocols
Many AKE1 protocols share the following feature. Each authenticating party is in possession of a static key pair
(PK = gs, s) ∈ G × Z|G|, where G = (G, ·) is a finite, cyclic group, and all computations involving s have the form
“H(Qs, σ)” for some hash function H and string σ. Notable examples of protocols in which this “DH-then-hash”
operation appears include WireGuard [70], the original QUIC handshake [79], and OPTLS [93], which was the basis
of an early draft of TLS 1.3.2 Our objective in this section is to rule out cross protocol attacks among this class of
AKE schemes.

We are especially motivated by a desire to characterize (in)secure key reuse among Noise protocols [120]. Noise
provides a set of rules for processing handshake patterns, which define the sequence of interactions between an
initiator and responder in a protocol. The processing rules involve three primitives: a DH function, an AEAD scheme
(cf. Def. 14), and a hash function. Each message sent or received by a host updates the host’s state, which consists of
the host’s ephemeral and static secret keys, the peer’s ephemeral and static public keys, shared state used to derive
the symmetric key and associated data, the current symmetric key, and the current nonce. The symmetric key, nonce,
and associated data are used to encrypt payloads accompanying each message, providing implicit authentication of a
peer via confirmation of knowledge of their static secret.

The Noise processing rules give rise to a large set of possible DH protocols, all of which share the core DH-then-hash
operation. (WireGuard is an notable example of a protocol in this set.) The processing rules are designed to make it
easy to verify properties of handshake patterns, and considerable effort has gone into their formal analysis [71, 89, 102].
But the study of handshake patterns in isolation does not fully address the complexity of using Noise to build and
deploy protocols. We have observed that for protocols used widely in practice (e.g., TLS), it is often necessary
for the communicants to negotiate the details of the handshake, including the pattern and the set of primitives
(cf. Chapter 1). This is out of scope of the core Noise specification, which aims to be as rigid as possible. As a result,
there is an apparent gap between our understanding of the security that Noise provides and how it might be used in
practice. One question that arises, which we will address here, is whether it is safe to reuse a single static key among
many patterns.

To address this question, we consider how to design a context-separable API suitable for this class of protocols.
We begin in §5.3.1 with the simplest possible API, which maps the static key s and an arbitrary Q ∈ G to Qs. Due
to a key-recovery attack by Brown and Gallant [51], access to such an API is known to significantly degrade the
effective security of level of its applications. We provide more evidence of the risk of this API by showing it is not
context separable (Theorem 5).

In light of this result, we consider the context separability of DH-then-hash when the hash function is instantiated
with HKDF [92], as it is in all of the aforementioned protocols [70, 79, 93, 120]. Recall from Chapter 4 that HKDF

takes as input a salt string, the initial key material (IKM) string, and an information string used to bind derived keys
to the context in which they are used. Modeling HKDF as an RO, we prove security under exposed interface attack
for applications that use distinct information strings when invoking HKDF (Theorem 6). Unfortunately, because
Noise does not exhibit this behavior, our analysis does not apply directly to Noise. We elaborate on this point at the
end of this section.

1Authenticated Key Exchange.
2The final version of 1.3 [123] is based instead on signed-DH [94], and the latest draft of the IETF standard for QUIC uses

the 1.3 handshake [84]. However, DH-then-hash authentication mechanisms have been considered for standardization as an
extension for 1.3 [128, 80].
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spec Static-DHG:
1 op (GEN): s←← Z|G|; ret (gs, s)
2 op (s int, Q elemG): ret Q s

spec DH-HKDFG: //R points to resources

3 var vr , en object
4 op (GEN): s←← Z|G|; ret (gs, s)

5 op ,R (s int, ctx , salt str, Q elemG):
6 ret R1(salt , en1(Qs), vr(ctx ))

Figure 5.4: Specifications Static-DHG and DH-HKDFG for finite, cyclic group G = (G, ·) with generator g, where G
is a represented set (Def. 18). Object vr computes a function from {0, 1}∗ to {0, 1}∗ and object en is a G-encoder.

5.3.1 Insecurity of Static DH

Let Γ = Static-DHG( ) as specified in Figure 5.4. The key generator chooses s ←← Z|G| and returns (gs, s); the
second operator (5.4:2) takes as input Q ∈ G and simply returns Q s. With the help of such a “static DH oracle”,
an algorithm devised by Brown and Gallant [51] significantly reduces the cost of computing discrete logarithms in
commonly used groups. Given a point P = gs ∈ G and an oracle that computes Q s for a chosen input Q ∈ G, the
algorithm correctly computes s in O(N1/3) time, where N is the order of G. This is a significant improvement over
the O(N1/2) complexity of the best known classical algorithms for solving the discrete log problem [121].

In order achieve this time complexity, their algorithm needs to perform about N1/3 queries to the API. Making
this number of queries is likely to be infeasible in practice, so one might conclude that choosing a large enough group
should render a real-world attack impossible. However, we show that exposing static DH is “risky” in the sense that
this API could lead to a cross protocol attack against an application. In particular, if the CDH assumption holds for
the given group, then the API cannot be proven context separable.

Definition 25 (The CDH problem). Let G = (G, ·) be a finite, cyclic group with generator g ∈ G. Define
AdvcdhG (A) := Pr

[
x, y ←← Z|G| : A(gx, gy) = gxy

]
to be the advantage of an adversary A in solving the CDH

problem for G. Informally, we say the CDH problem is hard for G if the advantage of every efficient adversary is
small. �

Let X = API(Γ ) and X̃ = API(Γ ). Theorem 5 states that, if the CDH problem is hard for G, then there exists
an efficient differentiator of X from X̃ that gets advantage close to 1. By Proposition 2, this rules out the security
of applications under exposed-Γ attack, at least in general.

Theorem 5. Suppose G has prime order. There exists a O(1)-time, (1, 1)-query adversary D such that for every
tS-time simulator S there exists a O(tS)-time adversary A such that Advindiff

X,X̃
(D,S) = 1−AdvcdhG (A) .

Proof. Adversary D is defined as follows. On input of (1,OUT) and with oracles X and X ′ for the system’s main
and auxiliary interface respectively: run PK ← X (INIT), r ←← Z|G|, and Z ← X ′(gr); if Z−r = PK , then return 1;
otherwise return 0. Since the order of G is prime, there is a unique multiplicative inverse r−1 of r (mod |G|). Hence,
in the real experiment we have that Z−r = (Q s)−r = ((gr)s)−r = gs = PK , and so Pr

[
Real outX (D)

]
= 1.

Now consider the probability that Z−r = PK in the reference experiment. From S we can construct a CDH
adversary A as follows. On input of (PK , Q) run S(SETUP), Z ← SX

2 (Q), and return Z, where X simulates
aux.-interface queries by answering queries matching (PK) with PK . Adversary A perfectly emulates the execu-
tion of D and S in the reference experiment. Moreover, A succeeds whenever D outputs 1. We conclude that
Pr
[
Ref out

X̃
(D,S)

]
= AdvcdhG (A). �

Remark 9. Our treatment of static DH focuses on intentionally exposing this functionality in an API, but the same
kind of argument applies when this exposure is inadvertent. Indeed, the existence of a static DH oracle in an API
can be difficult to recognize, and its impact on security is often quite subtle. For example, the weakness in TPM
discussed in §1.4 is the result of a static DH oracle inadvertently exposed by the API [6]. A rigorous analysis of the
TPM standard in our attack model would have unearthed this subtlety. More generally, we suggest that the approach
developed in this chapter could be used to vet API standards before they are implemented to help uncover such flaws.
Though the problem with TPM was obvious in hindsight, it is possible that more flaws lurk in this and other API
designs. �
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5.3.2 Context Separability of DH-then-HKDF

Fix G = (G, ·), vr , en, and Γ = DH-HKDFG(vr , en) as specified in Figure 5.4. Note that the call to HKDF is
fulfilled by a call to the first resource in the experiment (5.4:6): to obtain the concrete scheme, one would instantiate
this resource with HKDF . The API’s parameters are a G-encoder en (Def. 18) and a functional object vr . Just as in
our analysis of EdDSA, we require the function computed by vr to be collision resistant (Def. 24).

Modeling HKDF as an RO, we prove context separability of this operation for applications that use vr(α) as the
information string for each evaluation of HKDF, where α uniquely identifies the application context. Formally, for
all α ∈ {0, 1}∗ we define

Cα :=
{

(op, (ctx , salt , Q)) ∈ {0, 1}∗ × ({0, 1}∗ × {0, 1}∗ × G) : op = SK ∧ ctx = α
}
∪{

(op, (salt , ikm, info)) ∈ {0, 1}∗ × ({0, 1}∗)3 : op = RO ∧ info = vr(α)
} (5.14)

so that Cα denotes the set of main-interface queries whose corresponding evaluation of HKDF—whether directly via
RO or indirectly via SK—uses vr(α) as the info string.

Theorem 6. Fix integer k ≥ 0 and string α. Let C = Cα and τ = φCsep. Let X = API(Γ ), X̃ = ÃPI(Γ ), F be an
RO from ({0, 1}∗)3 to {0, 1}k, and DDH be a DDH oracle for G. Suppose that G has prime order. Then for every
C-regular game G and tA-time, (q1, q2, qr)-query, n.d. adversary A there exists an n.d. adversary B and a collider C
such that

AdvG
τ

X/F (A) ≤ AdvG
τ

X̃/(F,DDH )(B) + Advcrvr (C) ,

where DDH is tDDH -time, B is O((tA)2 + q2qrtDDH )-time, C is O(tA)-time, and B makes q1 main-interface queries,
at most q2 aux.-interface queries, at most q2+qr F -queries, and at most 2q2qr DDH -queries.

Proof. We prove the claim by appealing to the υ-indifferentiability of X/F from X̃/(F,DDH ), where υ = φ̂Csep,
and exhibit an efficient simulator for which all efficient adversaries have only small SR-INDIFFυ advantage. Let
S = Sim( ) as specified in Figure 5.5. By Lemma 1 there exist adversaries B and D′ for which

AdvG
τ

X/R(A) ≤ AdvG
τ

X̃/(R,DDH )(B) + Advsr-indiff
τ

W/R,W̃/(R,DDH )(D
′, S) , (5.15)

whereW = Wo(G,X), W̃ = Wo(G, X̃), B is O(tAtS)-time, D′ is (tA)-time, and tS is the runtime of S. Moreover, D′

is (q1+1, q2, qr)-query and B makes at most q1 queries to its main interface, and at most q2 queries to its aux. interface.
(We account for B’s resource queries at the end.) By Lemma 4 there exists an adversary D for which

Advsr-indiff
τ

W/R,W̃/(R,DDH )(D
′, S) ≤ Advsr-indiff

υ

X/R,X̃/(R,DDH )(D,S) . (5.16)

In the remainder, we exhibit a O(tA)-time collider C for which

Advsr-indiff
υ

X/R,X̃/(R,DDH )(D,S) ≤ Advcrvr (C) . (5.17)

We assume that D is υ-respecting, as defined in the proof of Theorem 4. (This assumption is without loss because υ
is efficiently computable and G is C-regular.)

Refer to S’s specification Sim in Figure 5.5. S’s job is to respond to DH-then-HKDF queries made by D without
using the secret key s. To do so, it leverages the fact that it also gets to answer D’s RO queries. We keep a track of
a pair of sets V,V ⊆ G, where V is called the set of “real” RO points and V the set of “simulated” RO points. Points
corresponding to the former are answered using the real RO F , while those corresponding to the latter are answered
by simulating an RO via a table T . (This is similar to what we did in Theorem 3.)

Prior to the system being initialized (by a call to the INIT-operator of the main interface), each aux.-interface query
is answered with ⊥, since this is the output of the real operator prior the secret key being generated. Thereafter,
each aux.-interface query matching (ctx , salt str, Q elemG) is answered as follows. If vr(ctx ) = vr(α), then halt
and output ⊥. (This ensures that the output is independent of all main-interface queries: we will argue that the
probability of this event is small, assuming D is υ-respecting and vr is CR-secure.) Next, consult the set V to
determine if Q s = Z for some previous RO query incident to Z: if so, then use the real RO to compute the output.
(This condition is determined by a query to DDH , since Q s = Z holds just in case DDH (PK , Q, Z) = 1 holds, where
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spec Sim: //X points to X̃2; R to resources (F,DDH )

1 var T table, V,V set
2 op (SETUP): T ← [ ]; V,V ← ∅
3 opX (2, PK):
4 if PK = ⊥ then PK ← X (PK)
5 ret PK
6 opX ,R (2, SK, (ctx , salt str, Q elemG)):
7 var PK elemG
8 PK ← X (PK)
9 if PK = ⊥ then ⊥ //Not initialized

10 if vr(α) = vr(ctx ) then ret ⊥
11 for Z ∈ V do
12 if R2(PK , Q, Z) = 1 then
13 ret R1(salt , en1(Z), vr(ctx ))

14 V ← V ∪ {Q}
15 ret R(ctx , salt , Q)

16 opX ,R (3, (1, (salt , ikm, info str))):
17 var PK , Z elemG
18 PK ← X (PK)
19 Z ← en0(ikm)
20 if Z = ⊥ ∨ info = vr(α) then
21 ret R1(salt , ikm, info)

22 for Q ∈ V do //PK = ⊥ ⇒ V = ∅
23 if R2(PK , Q, Z) = 1 then
24 ret R(ctx , salt , Q)
25 V ← V ∪ {Z}
26 ret R1(salt , ikm, info)

procedure R(ctx , salt , Q):
27 if T [ctx , salt , Q] = ⊥ then
28 T [ctx , salt , Q]←← {0, 1}k
29 ret T [ctx , salt , Q]

procedure G0
F (D): G1

F

30 var T, T table, V,V set, PK elemG , s int
31 D(SETUP)

32 T, T ← [ ]; V,V ← ∅
33 ret DX1,X2,S3

1 (OUT)

interface X:
34 op (1, INIT): s←← Z|G|; PK ← gs; ret PK
35 op (1, SK, (ctx , salt str, Q elemG)):
36 ret R1(salt , en1(Q s), vr(ctx ))
37 op (1, RO, (1, (salt , ikm, info str))):
38 ret R1(salt , ikm, info)
39 op (2, PK): ret PK
40 op (2, SK, (ctx , salt str, Q elemG)):
41 if vr(α) = vr(ctx ) then ret ⊥
42 ret R1(salt , en1(Q s), vr(ctx ))

interface R:
43 op (1, (salt , ikm, info str)):
44 if T [salt , ikm, info] = ⊥ then
45 T [salt , ikm, info]←← {0, 1}k
46 ret T [salt , ikm, info]

interface S:
47 op (3, (1, (salt , ikm, info str))):
48 ret R1(salt , ikm, info)

interface X: G2
F G1

F

49 op (1, INIT): s←← Z|G|; PK ← gs; ret PK
50 op (1, SK, (ctx , salt str, Q elemG)):
51 ret R1(salt , en1(Q s), vr(ctx ))
52 op (1, RO, (1, (salt , ikm, info str))):
53 ret R1(salt , ikm, info)
54 op (2, PK): ret PK
55 op (2, SK, (ctx , salt str, Q elemG)):
56 if vr(α) = vr(ctx ) then ret ⊥
57 ret R1(salt , en1(Q s), vr(ctx ))

58 for Z ∈ V do
59 if Q s = Z then
60 ret R1(salt , en1(Z), vr(ctx ))

61 V ← V ∪ {Q}
62 ret R(ctx , salt , Q)

interface S:
63 op (3, (1, (salt , ikm, info str))):
64 var Z elemG
65 Z ← en0(ikm)
66 if Z = ⊥ ∨ info = vr(α) then
67 ret R1(salt , ikm, info)

68 for Q ∈ V do
69 if Q s = Z then
70 ret R(ctx , salt , Q)
71 V ← V ∪ {Z}

72 ret R1(salt , ikm, info)

procedure R(ctx , salt , Q):
73 if T [ctx , salt , Q] = ⊥ then T [ctx , salt , Q]←← {0, 1}k
74 ret T [ctx , salt , Q]

Figure 5.5: Specifications for the proof of Theorem 6. Top: Simulator Sim. Bottom: Experiments G0, G1, and G2.
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PK = gs.) Finally, if no such Z exists, then we use the simulated RO table T to compute the output and add Q to
the set of simulated RO points V.

Each RO query that might coincide with a simulated API query (i.e., those for which ikm encodes an element
of G and info 6= vr(α); cf. 5.5:20-21) is answered as follows. First, consult V to determine if Q s = Z for some previous
API query incident to Q: if so, then use the simulated RO to compute the output. Finally, if no such Q exists, then
use the real RO to compute the output and add Z to the set of real RO points V.

Experiment 0. We fix Eq. (5.17) using a game-playing argument. We begin with the procedure G0
F defined in

the bottom panel of Figure 5.5, which is equivalent to the real experiment for X/F . Its definition was obtained by
replacing the procedures W and R (cf. Figure 2.3) with pure interfaces X and S that emulate the real system X

and RO F respectively. Observe the transcript tx (and evaluation of the transcript predicate υ) has been removed,
and the output of the experiment is simply the output of D. This simplification does not change the outcome of the
experiment since D is υ-respecting. Hence,

Pr
[
Real out

υ

X/F (D)
]

= Pr
[
G0
F (D)

]
. (5.18)

Revision 0-1. Next, procedure G1
F is obtained from G0

F by changing behavior of the aux.-interface. If vr(α) =

vr(ctx ), where ctx is the input context string, then the operator immediately halts and outputs ⊥ (5.5:41). Since D is
υ-respecting, this event occurs only if D makes an aux.-interface query matching (SK, (ctx str, . . .)) for which ctx 6= α

but vr(ctx ) = vr(α). In particular, by the fundamental lemma of game playing, there exists a O(tA)-time collider C
for which

Pr
[
G1
F (D)

]
− Pr

[
G1
F (D)

]
≤ Advcrvr (C) . (5.19)

The collider simply runs G1
F (D) until the condition on line 5.5:41 is met and halts with output (α, ctx ). If D halts

before this condition is met, then C gives up and outputs (ε, ε).

Revision 1-2. Next, we modify X and S so that the outputs of, respectively, the aux.-interface and RO are answered
just as they are by the simulator S. Since there is no DDH oracle in the experiment, the conditions on lines 5.5:12
and 23 are evaluated using the secret key (i.e., “R2(PK , Q, Z) = 1” is replaced with “Q s = Z”). By correctness of en,
and because the order of the group G is prime, the outputs of the modified interfaces are identically distributed to
the outputs of the unmodified interfaces. In particular, we have that

Pr
[
G2
F (D)

]
= Pr

[
G1
F (D)

]
. (5.20)

Experiment 2. By replacing “Q s = Z” with “R2(PK , Q, Z) = 1” we obtain a procedure that is functionally
equivalent to the reference experiment with X̃/(F,DDH ) and S. We conclude that

Pr
[
Ref outυ

X̃/F,DDH (D,S)
]

= Pr
[
G2
F (D)

]
. (5.21)

To complete the proof, we comment on the runtime and query complexity of B. Adversary B makes precisely as
many main-interface queries as A, at most as many aux.-interface queries as A, and at most qr + q2 RO queries,
since A makes qr RO queries and each call to S results in at most 1 RO query. Finally, adversary B makes at most
2q2qr DDH -queries because each RO query simulated by S results in at most q2 DDH -queries (|V| ≤ q2 by definition)
and each API query simulated by S results in at most qr DDH -queries (|V| ≤ qr by definition).

By Lemma 1 the runtime of B is O(tAtS), where tS is the runtime of S. The runtime of each operator defined by S
is dominated by: (1) the lengths the inputs, which are all O(tA) since the inputs are provided by the adversary; and
(2) the for-loops, which are both O(q̂tDDH )-time, where q̂ = max{q2, qr}. This yields an overestimate of B’s runtime,
since the DDH oracle is evaluated at most 2q2qr times. In particular, the runtime of B is O((tA)2 + q2qrtDDH ). �

Implications for Noise. Noise uses an empty information string for each HKDF evaluation (see [120, §4.3]): in
order to obtain an API suitable for Noise as it is, one would define vr so that vr(ctx ) = ε for all ctx . As this function
is not collision resistant, Theorem 6 cannot be used to argue that Noise is secure in the presence of key reuse.

However, this does not imply that any Noise protocol is vulnerable to a cross protocol attack. Indeed, the
processing rules provide a defense by binding the handshake pattern and parameters to the state (see [120, Sec. 5.2])
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using the hash of the protocol name (e.g., Noise_NK_25519_AESGCM_SHA256) as the initial HKDF salt. For each pattern,
Noise specifies the initial salt salt0 and a sequence of IKMs ikm1, . . . , ikmc, each of which encodes an element of G or
a pre-shared key (PSK). The number of IKMs, and the type of each, depends on the pattern. The i-th call to HKDF
has the form HKDF (salt i−1, ikmi, ε), where salt i−1 was derived from the output of the previous call. By chaining
together evaluations of HKDF in this way, the sequence of salts computed during the protocol’s execution are all
bound to the protocol name. Intuitively, this mechanism ought to provide some measure of defense against exposed
interface attacks.

Unfortunately, this cannot be proven in our framework. In the first place, it is not clear how to define context
separability, since the set of API queries made by different Noise protocols are non-disjoint. In particular, while
the first query in each protocol is different—each protocol uses a different initial salt—there is a small chance that
subsequent queries might collide (i.e., use the same salt). Moreover, the set of API queries made by the game is not
efficiently computable because it depends on the game’s random choices. (In contrast, the set Cα in Eq. (5.14) is
efficiently computable, since there is a simple way to check that a given query was made by the game: just check
that info = vr(α).)

If we make no restrictions on API queries, or if we merely ensure that the initial salt is distinct, then there
is a simple way to differentiate X/HKDF from X̃/HKDF . Choose at random an integer r ∈ Z|G| and ask L ←
W(ctx , salt , gr) and L′ ←W ′(ctx , salt , gr) for some ctx , salt ∈ {0, 1}∗, where W (resp. W ′) is the name of the main
(resp. aux.) interface. In the real experiment, we will have that L = L′; but in the reference experiment, we will
have L 6= L′ with high probability, since the simulator has no information about the adversary’s main-interface query.
While this differentiator does not yield a cross protocol attack, it does mean we cannot rule these out.

Our analysis leaves open the security of key reuse in Noise as it is. We have shown, however, that a simple tweak
of the processing rules (i.e., using the protocol name as the info string for HKDF ) would close this gap.

Remark 10. PS19 similarly analyze a variant of Noise in which the DH-then-HKDF operation uses the information
string as shown in Figure 5.4. But their result (cf. [117, Theorem 7]) is less general than ours, in the sense that
their formal model required them to exclude a number of handshake patterns from the analysis. This limitation is a
consequence of the strength of their GAP1 security notion (cf. Remark 7): whereas we have found DH-then-HKDF
operation to be context separable, this could not be shown in their setting (cf. [117, Theorem 4]). �

5.4 Discussion
Context separability is a property of cryptographic APIs that allows one to “lift” the known security of a given
application to security in the presence key reuse. As case studies we examined the APIs of the IETF standard for
EdDSA and the Noise protocol framework. The contextualized variants of EdDSA are easily seen to be context
separable (Theorem 4); Noise presents some difficulties, but which can be overcome with a slight tweak of the
processing rules (Theorem 6). These results suggest that designing APIs to be context separable is not difficult, but
provides substantial analytical benefit. In particular, it provides a convenient way to reason about cross protocol
attacks that arise as a result of key reuse.

Another application of context separability is to the problem of accounting for extensibility in cryptographic
protocols. Two security considerations arise when designing an extension: the first, of course, is that the extension
meets its intended security goal; but it is equally important to ensure that extension’s availability does not weaken the
security goal of the base protocol. As a motivating example, recall the cross protocol attack against TLS 1.2 [126] of
Mavrogiannopoulos et al. [105], first discussed in §1.4. Their key-recovery attack results from extending the protocol
spec by the addition of ECDH ciphersuites with custom parameters. It exploits the ambiguous encoding of (EC)DH
parameters of the ServerKeyExchange message, as well as the lack of binding of the selected ciphersuite (DH or
ECDH) to the signature generated by the server. This weakness can be formulated as an exposed interface attack
against TLS 1.2, where the API is used by the server to sign messages. Here, the “target application” is the usage of
the DH ciphersuite, while the “other applications” (formalized by the exposed interface attack) includes usage of the
ECDH ciphersuite.3

3Note that the term “API” in this attack may not be a system to which the adversary has direct access, but only indirect
access by interacting with the server. In particular, “API” refers to the signing interface in the TLS libraries that were vulnerable
to the attack.
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Viewing their attack in this light, consider how it might have been prevented. Mavrogiannopoulos et al. observe
(cf. [105, §6]) that had the server’s signature provided an explicit binding of the ciphersuite to the key-exchange
parameters, then there would have been no chance of the client misinterpreting ECDH parameters as DH parameters.
This is precisely what our notion of context separability aims to formalize: that binding secret key operations to the
context in which they are used prevents operations performed in the context of one protocol—or ciphersuite, in this
case—from being used to attack another.

Fortunately, this observation appears to be reflected in TLS 1.3 [123]. There the client and server sign all
protocol messages, rather than only specific values. (In 1.2, only the key exchange parameters, ClientHello.random,
and ServerHello.random are signed.) Because the parameters of the handshake are uniquely determined by this
sequence of messages, this provides a cryptographic binding of the handshake to the set of extensions that will be
used. An important question, which this dissertation will leave open, is whether this binding could be used to argue
that the signing API in TLS 1.3 is context separable. If so, this would provide a simple way to reason about cross
protocol attacks among different sets of extensions.

Answering this question requires overcoming at least two interesting challenges. First, the client and server
negotiate the signature schemes they use to sign the handshake, just as they do for all other parameters. This means
that proving context separability will require us to (1) appeal to the security properties of all supported schemes and
(2) address any agility issues [5] that might arise as a result of shared usage of a secret key by two or more schemes.
The second issue is that not all extensions are negotiated in the clear. Recall from §4.2 that the server’s extension
response might appear in the ServerHello, in which case it is transmitted in the clear; but it can also appear later in
the sequence of messages (i.e., in EncryptedExtensions...CertificateVerify), in which case the response is encrypted.
Consequentially, the selected set of extensions (i.e., the signature’s “context”) might not be efficiently computable.
Despite these challenges, we are optimistic that this methodology would be an effective tool for guiding the design
and security analysis of new extensions for TLS.
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Chapter 6

Conclusion

While provable security has shaped modern cryptography as we know it, there are a number of ways it might fail
to deliver on its promise of “bullet-proof” security [64, 90, 37]. In particular, it succeeds for a given system only to
the extent that the formal specification captures the system’s real-world behavior: when a discrepancy arises, it is
often left to practitioners to interpret its impact on existing analysis. This dissertation offers principled guidance for
carrying out this task.

6.1 Summary

When considering a change to a system, the immediate task is to determine whether the translation creates an
exploitable weakness. Our main contribution is a formal framework (presented in Chapter 2) in which security of
the translated system is proven via a black-box reduction from the security property established by existing analysis.
By the “lifting” lemma (Lemma 1) and a “preservation” lemma (Lemma 2 or 4), this reduction is possible whenever
the translated system is shared-resource indifferentiable from the original. This approach significantly decreases the
analytical effort required to evaluate the security impact of translation: rather than generate a fresh proof for the
translated system, one merely needs to reason about the translation itself.

We explored two applications of this methodology. In Chapter 4, we considered the problem of translating a
system by revising the scheme’s specification. This form of translation is especially common: examples include the
translation of a protocol proposed in the literature into a cryptographic standard (e.g., the translation of OPTLS
into an early draft of TLS 1.3 [93]); revision of an existing standard by including a new feature (e.g., adding a
new ciphersuite to TLS 1.2 [105]); or implementation of an obscure feature not considered in existing analysis (e.g.,
renegotiation in TLS 1.2 [78]). In order to enable a formal treatment of these kinds of discrepancies, we specified
an execution environment for AKE protocols suitable for expressing a variety of security goals in the literature. As
a demonstration, we designed an extension for TLS 1.3 that integrates SPAKE2 [4] into the handshake and proved
that the execution of the extension is indifferentiable from the execution of SPAKE2. This allowed us to prove the
extension is at least as secure as SPAKE2 itself, modulo a modest loss in concrete security (Theorem 3).

In Chapter 5, we considered the problem of translating a system by changing the scheme’s execution environment.
An important example, which we addressed in this work, is translation by reuse of a system’s secret keys. We
formalized an attack model for this setting that considers the security of an application of interest when access to
the underlying API is also shared by other applications. Within the translation framework we formulated a property
of the API, called context separability, that allows one to prove security in the presence of key reuse by appealing
to the application’s existing analysis. Context separability reflects a design pattern already apparent in a variety of
cryptographic standards, two of which we studied in detail [87, 120] (Theorems 4 and 6).

Taken together, the case studies considered in this work represent only a small fraction of the discrepancies
that might arise between a real system and its formal specification. In light of this gap, techniques have advanced
considerably in recent years for rigorously modeling real-world cryptography in all of its complexity. (We exhibited
one such technique in Chapter 3.) But because these systems are subject to continual change, the task of ensuring
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that their security rests on firm, formal foundations remains an on-going challenge. Our hope is that this dissertation
will help guide this process.

Limitations. Although the translation framework is useful for evaluating the impact of changes to a cryptosystem,
we emphasize that it is not always the best tool for the task at hand. First, when the security goal of the translated
protocol differs from that of the original, our framework (in its current form) does not provide a way to argue that
the new goal is achieved: in this case, a fresh proof is still required. Second, the real system might be so different
from the reference system that an indifferentiability-style argument is impossible (cf. Theorem 5). Our methodology
is conservative in the sense that indifferentiability is sufficient, but not necessary, to prove the desired claim: ruling
out indifferentiability does not necessarily imply a concrete attack against the real system.

6.2 Future Work
We expect the translation framework to have high value for the development of cryptographic standards, since it
provides a way to quickly vet changes to a protocol before the changes are implemented—and without the need for
expert knowledge of the state of the system’s proven security. We believe there are a number of standardization
efforts underway that stand to benefit from such a tool.

– We have already mentioned in Chapter 4 the PAKE-standardization effort of the CFRG. Each of the schemes
being considered is based on a protocol originally proposed in the academic literature (e.g., [4, 86, 81]): proving
indifferentiability of the standard from the original scheme ensures that whatever security supports the latter
also applies to the standard.

– There are a number of extensions for TLS being considered, including PAKE extensions [143, 16], other modes
of authentication [17, 128], and new features that change the protocol’s security properties [127, 119]. Each of
these extensions requires supporting analysis, both to establish the security of the extension itself and to ensure
that the extension’s availability does not create a vulnerability. (See the discussion at the end of Chapter 5 for
one possible approach.)

– An effort currently in its infancy is the so-called “Compact TLS (cTLS)” protocol [125], which aims to provide
the same level of security of TLS 1.3, but without the bloat that resulted from the need to maintain backwards
compatibility with previous versions of the protocol. Ideally, the security of cTLS would follow from the security
of TLS 1.3.

– Similarly, the key-exchange protocol in the most recent iteration of QUIC [84] is based on the TLS 1.3 hand-
shake; but QUIC is designed to run in an execution environment in which packets are routinely dropped or
delivered out-of-order. (In particular, QUIC does not assume reliable transport, like TLS does.) An interesting
question is whether the handshake’s security is preserved in this new execution environment.

Our framework is well-suited to support many of these efforts. However, given the “pen-and-paper” nature of the
security proofs presented in this dissertation, it remains to be seen whether our approach scales to more complex
analyses or more sophisticated systems (e.g., the Messaging Layer Security (MLS) protocol [15]).

Indeed, the rigor of code-based game-playing proofs is limited, ultimately, by the (in)formality of its pseu-
docode [33]. This is also true of the pseudocode in this dissertation: while we have endeavored to ensure that
the semantics of worlds, adversaries, simulators, and so on is clear in context, we have not attempted to fully specify
objects’ syntax or formalize their semantics. Doing so—or perhaps reformulating our framework in an existing lan-
guage with a suitable formal semantics—could ease the task of proving (and verifying proofs of) secure translation.
Whether mechanization of proofs in the translation framework is possible remains an open question since, to the
best of our knowledge, no one has attempted a machine-checked proof of indifferentiability. However, concurrent
work has yielded promising results: a proof of security in the UC framework [53] has recently been demonstrated for
the EasyCrypt proof system [58]; and given the similarities between UC and indifferentiability (cf. [104, §3.3]), this
suggests that mechanization of indifferentiability arguments might be feasible.
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